Citation: Jing ZHU, Shun ZHONG, Lin SUN, Yong DAI. Photo-responsive UiO-66 with spiropyran functionalization adsorbent: Preparation and adsorption performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1510-1518. doi: 10.11862/CJIC.2023.079 shu

Photo-responsive UiO-66 with spiropyran functionalization adsorbent: Preparation and adsorption performance

  • Corresponding author: Jing ZHU, jingzhu@ycit.cn Yong DAI, dy@ycit.cn
  • Received Date: 20 February 2023
    Revised Date: 2 May 2023

Figures(11)

  • Herein, a representative metal-organic framework (MOF), UiO-66, with a microporous structure and hydrothermal stability, has been chosen as porous support. Photo-responsive adsorbents were prepared by introducing the spiropyran derivative SP-CH3 into the non-polar pore cage of UiO-66 as photo-regulated active sites. The framework structure of the support material was maintained after SP-CH3 functionalization. An anionic dye, methyl orange, was adopted as a probe to explore the adsorption and desorption performance of the adsorbent in different light conditions. The experimental results showed that the adsorption amount of methyl orange by the sample after UV irradiation was 41.99 mg·g-1, which increased by 57.56% in comparison to that after visible light irradiation. In addition, the desorption of methyl orange of the adsorbent after visible light irradiation was up to 81.6%. Changes in the electric surface charge and polarity of the adsorbents, owing to efficient photo-isomerization of spiropyran in the non-polar environment of UiO-66 cage, have great effects on the adsorption/desorption behaviors of methyl orange on the adsorbents. The resultant adsorbents with photo-regulated active sites exhibit enhanced adsorptive performance and effective desorption.
  • 加载中
    1. [1]

      Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016,532(7600):435-437. doi: 10.1038/532435a

    2. [2]

      Li J R, Yu J, Lu W, Sun L B, Sculley J, Balbuena P B, Zhou H C. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption[J]. Nat. Commun., 2013,4(1)1538. doi: 10.1038/ncomms2552

    3. [3]

      Martin C R, Park K C, Leith G A, Yu J, Mathur A, Wilson G R, Gange G B, Barth E L, Ly R T, Manley O M, Forrester K L, Karakalos S G, Smith M D, Makris T M, Vannucci A K, Peryshkov D V, Shustova N B. Stimuli-modulated metal oxidation states in photochromic MOFs[J]. J. Am. Chem. Soc., 2022,144(10):4457-4468. doi: 10.1021/jacs.1c11984

    4. [4]

      Zhu Z H, Ni Z, Zou H H, Feng G, Tang B Z. Smart metal-organic frameworks with reversible luminescence/magnetic switch behavior for HCl vapor detection[J]. Adv. Funct. Mater., 2021,31(52)2106925. doi: 10.1002/adfm.202106925

    5. [5]

      Kotsuchibashi Y. Recent advances in multi-temperature-responsive polymeric materials[J]. Polym. J., 2020,52(7):681-689. doi: 10.1038/s41428-020-0330-0

    6. [6]

      Wei Y B, Zeng Q, Huang J Z, Hu Q, Guo X R, Wang L S. An electro-responsive imprinted biosensor with switchable affinity toward proteins[J]. Chem. Commun., 2018,54(66):9163-9166. doi: 10.1039/C8CC05482G

    7. [7]

      Ding J J, Zhu J, Li Y X, Liu X Q, Sun L B. Smart adsorbents functionalized with thermoresponsive polymers for selective adsorption and energy-saving regeneration[J]. Ind. Eng. Chem. Res., 2017,56(15):4341-4349. doi: 10.1021/acs.iecr.7b00582

    8. [8]

      Wang Z, Knebel A, Grosjean S, Wagner D, Bräse S, Wöll C, Caro J, Heinke L. Tunable molecular separation by nanoporous membranes[J]. Nat. Commun., 2016,7(1)13872. doi: 10.1038/ncomms13872

    9. [9]

      Pallach R, Keupp J, Terlinden K, Frentzel-Beyme L, Kloß M, Machalica A, Kotschy J, Vasa S K, Chater P A, Sternemann C, Wharmby M T, Linser R, Schmid R, Henke S. Frustrated flexibility in metal-organic frameworks[J]. Nat. Commun., 2021,12(1)4097. doi: 10.1038/s41467-021-24188-4

    10. [10]

      Dong J, Wee V, Zhao D. Stimuli-responsive metal-organic frameworks enabled by intrinsic molecular motion[J]. Nat. Mater., 2022,21:1334-1340. doi: 10.1038/s41563-022-01317-y

    11. [11]

      Park S, Lee J, Jeong H, Bae S, Kang J, Moon D, Park J. Multi-stimuli-engendered radical-anionic MOFs: Visualization of structural transformation upon radical formation[J]. Chem, 2022,8(7):1993-2010. doi: 10.1016/j.chempr.2022.03.023

    12. [12]

      Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials[J]. Nat. Mater., 2010,9(2):101-113. doi: 10.1038/nmat2614

    13. [13]

      Jiang Y, Tan P, Qi S C, Sun L B. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: Efficient adsorbents for tailorable CO2 capture[J]. Angew. Chem. Int. Ed., 2019,58(20):6600-6604. doi: 10.1002/anie.201900141

    14. [14]

      Li P, Xie G, Kong X Y, Zhang Z, Xiao K, Wen L, Jiang L. Light-controlled ion transport through biomimetic DNA-based channels[J]. Angew. Chem. Int. Ed., 2016,128(50):15866-15870. doi: 10.1002/ange.201609161

    15. [15]

      Yagai S, Kitamura A. Recent advances in photoresponsive supramolecular self-assemblies[J]. Chem. Soc. Rev., 2008,37(8):1520-1529. doi: 10.1039/b703092b

    16. [16]

      Zhu J, Tan P, Yang P P, Liu X Q, Jiang Y, Sun L B. Smart adsorbents with reversible photo-regulated molecular switches for selective adsorption and efficient regeneration[J]. Chem. Commun., 2016,52(77):11531-11534. doi: 10.1039/C6CC06279B

    17. [17]

      Ou R, Zhang H, Truong V X. A sunlight-responsive metal-organic framework system for sustainable water desalination[J]. Nat. Sustain., 2020,3(12):1052-1058. doi: 10.1038/s41893-020-0590-x

    18. [18]

      Euchler D, Ehgartner C R, Hüsing N. Monolithic spiropyran-based porous polysilsesquioxanes with stimulus-responsive properties[J]. ACS Appl. Mater. Interfaces, 2020,12(42):47754-47762. doi: 10.1021/acsami.0c14987

    19. [19]

      Genovese M E, Athanassiou A, Fragouli D. Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing[J]. J. Mater. Chem. A, 2015,3(44):22441-22447. doi: 10.1039/C5TA06118K

    20. [20]

      Guan X, He M, Chang J. Photo-controllability of fluoride remediation by spiropyran-functionalized mesoporous silica powder[J]. J. Environ. Chem. Eng., 2021,9(1)104655. doi: 10.1016/j.jece.2020.104655

    21. [21]

      Zhu Q L, Xu Q. Metal-organic framework composites[J]. Chem. Soc. Rev., 2014,43(16):5468-5512. doi: 10.1039/C3CS60472A

    22. [22]

      Noro S I, Meng Y, Suzuki K. A temporarily pore-openable porous coordination polymer for guest adsorption/desorption[J]. Inorg. Chem., 2021,60(7):4531-4538. doi: 10.1021/acs.inorgchem.0c03420

    23. [23]

      Katz M J, Brown Z J, Colón Y J, Siu P W, Scheidt K A, Snurr R Q, Hupp J T, Farha O K. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chem. Commun., 2013,49(82):9449-9451. doi: 10.1039/c3cc46105j

    24. [24]

      Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008,130(42):13850-13851. doi: 10.1021/ja8057953

    25. [25]

      Klajn R. Spiropyran-based dynamic materials[J]. Chem. Soc. Rev., 2014,43(1):148-184. doi: 10.1039/C3CS60181A

    26. [26]

      Virmani E, Rotter J M, Mähringer A, von Zons T, Godt A, Bein T, Wuttke S, Medina D D. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion[J]. J. Am. Chem. Soc., 2018,140(14):4812-4819. doi: 10.1021/jacs.7b08174

    27. [27]

      Liu H D, Cheng M, Liu Y, Zhang G X, Li L, Du L, Li B, Xiao S, Wang G F, Yang X F. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues[J]. Coord. Chem. Rev., 2022,458214428. doi: 10.1016/j.ccr.2022.214428

    28. [28]

      ZHANG S Z, MA C X, GUO H Y, SHE J H, ZHANG J Y, SHI Y B, LI G D, REN X M, XIE J L. Preparation and characterization of copper complexes of schiff base ligands synthesized in situ from spiropyran derivative[J]. Chinese J. Inorg. Chem., 2022,38(2):353-360.  

    29. [29]

      Garg S, Schwartz H, Kozlowska M, Kanj A B, Müller K, Wenzel W, Ruschewitz U, Heinke L. Conductance photoswitching of metal-organic frameworks with embedded spiropyran[J]. Angew. Chem. Int. Ed., 2019,58(4):1193-1197. doi: 10.1002/anie.201811458

    30. [30]

      Lyu J F, Liu H X, Zeng Z L Z, Zhang J S, Xiao Z X, Bai P, Guo X H. Metal-organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution[J]. Ind. Eng. Chem. Res., 2017,56(9):2565-2572. doi: 10.1021/acs.iecr.6b04066

    31. [31]

      XU M Y, SONG G L, HAN B H. Postsynthetic modification of UiO-66 with perfluoroalkyl for adsorbing organic pollutants[J]. Chinese J. Inorg. Chem., 2019,35(11):2136-2144.  

    32. [32]

      Jiang F J, Chen S, Cao Z Q, Wang G J. A photo, temperature, and pH responsive spiropyran-functionalized polymer: Synthesis, self-assembly and controlled release[J]. Polymer, 2016,83:85-91. doi: 10.1016/j.polymer.2015.12.027

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(8)
  • Abstract views(800)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return