Citation: He-Jun GAO, Jing-Wen YANG, Jia-Xiao QIAO, Wei QIAO, Chao-Chao CAO, Ze-Xia LI, Peng WANG, Cheng-Chun TANG, Yan-Ming XUE. Boron nitride nanosheets/carbon fibers-modified separators for high-performance lithium-sulfur batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1139-1150. doi: 10.11862/CJIC.2023.078 shu

Boron nitride nanosheets/carbon fibers-modified separators for high-performance lithium-sulfur batteries

  • Corresponding author: Yan-Ming XUE, ym.xue@hebut.edu.cn
  • Received Date: 26 February 2023
    Revised Date: 22 April 2023

Figures(7)

  • By electrospinning, thermal imidization, and carbonization processes, boron nitride nanosheets (BNNSs) were coated on the surface of carbon fibers (CFs). Thus, BNNSs and CFs can constitute the boron nitride nanosheets/ carbon fibers (BNNSs/CFs) composite to modify commercial polypropylene (PP) separators. The synergetic effect of BNNSs and CFs provides an additional conductive path to cells and serves to localize the soluble polysulfide into the cathode region. As a result, the cell assembled with the 10BNNSs/CFs-PP separator exhibited an initial discharge capacity as high as 1 295.7 mAh·g-1 at 0.05C. Upon increasing the current density to 1C, the cells with 10BNNSs/CFs-PP separators also delivered excellent long-term cycling stability up to 400 cycles and a high final capacity of 583.1 mAh·g-1 with a capacity decay of 0.069% per cycle.
  • 加载中
    1. [1]

      Bu F X, Shakir I, Xu Y X. 3D graphene composites for efficient electrochemical energy storage[J]. Adv.Mater. Interfaces, 2018,5(15)1800468. doi: 10.1002/admi.201800468

    2. [2]

      Manthiram A, Fu Y Z, Su Y S. Challenges and prospects of lithium-sulfur batteries. Acc[J]. Chem. Res, 2013,46(5):1125-1134. doi: 10.1021/ar300179v

    3. [3]

      Deng N P, Liu Y, Li Q X, Yan J, Lei W W, Wang G, Wang L Y, LiangY Y, Kang W M, Cheng B W. Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery[J]. Energy Storage Mater, 2019,23:314-349.  

    4. [4]

      WANG X W. Layered hexagonal Co1-xS decorating N - doped carbon nanotubes as a sulfur host for Li-S batteries[J]. Chinese J. Inorg. Chem, 2022,38(10):2065-2071. doi: 10.11862/CJIC.2022.180

    5. [5]

      Ni L B, Yang G, Liu Y, Wu Z, Ma Z Y, Shen C, Lv Z X, Wang Q, Gong X X, Xie J, Diao G W, Wei Y G. Self-assembled polyoxometalate nanodots as bidirectional cluster catalysts for polysulfide/sulfide redox conversion in lithium-sulfur batteries[J]. ACS Nano, 2021,15(7):12222-12236. doi: 10.1021/acsnano.1c03852

    6. [6]

      PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 hollow spheres as high efficient sulfur host for Li-S batteries[J]. Chinese J. Inorg. Chem, 2020,36(3):575-583.  

    7. [7]

      Yamamoto, Goto, Tang, Nomura, Hayasaka, Yoshioka, Ito, Morooka, Nishihara, Kyotani, T. Nano - confinement of insulating sulfur in the cathode composite of all-solid-state Li-S batteries using flexible carbon materials with large pore volumes[J]. ACS Appl. Mater. Interfaces, 2021,13(32):38613-38622. doi: 10.1021/acsami.1c10275

    8. [8]

      Ponnada S, Kiai M S, Gorle D B, Rajagopal S, Andra S, Nowduri A, Muniasamy K. Insight into lithium- sulfur batteries with novel modified separators: recent progress and perspectives[J]. Energy & Fuels, 2021,35(14):11089-11117.  

    9. [9]

      LI R, SUN X G, ZOU J Y, HE Q. NMAP interlayer for inhibiting shuttle effect of lithium-sulfur battery[J]. Chinese J. Inorg. Chem, 2020,36(4):673-680.  

    10. [10]

      Yang T, Song Y, Tian X D, Wu S J, Liu Z J. Insight into pore structures evolution and applications in lithium - sulfur battery of pitch fractions - based activated carbons[J]. J. Alloy. Compd, 2021,875160067. doi: 10.1016/j.jallcom.2021.160067

    11. [11]

      Xiao H, Zhang T F, Liang X, Gao Q M. A porous rGO with high specific surface area and high content of doped-N modifying the separator for high performance Li-S battery[J]. Electrochim. Acta, 2021,391138910. doi: 10.1016/j.electacta.2021.138910

    12. [12]

      ZHU S K, SONG Y, LONG X, OUYANG Q S, SHAO J J, SHI B. La-doped BaSnO3/multi-walled carbon nanotube modified separator: Synthesis and application in lithium-sulfur battery[J]. Chinese J. Inorg. Chem, 2022,38(7):1433-1440.  

    13. [13]

      Chung S H, Han P, Singhal R, Kalra V, Manthiram A. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide[J]. Adv. Energy Mater, 2015,5(18)1500738. doi: 10.1002/aenm.201500738

    14. [14]

      Yang T, Tian X D, Song Y, Wu S J, Liu Z J. Oxygen-doped carbon nanofiber nonwovens as an effective interlayer towards accelerating electrochemical kinetics for lithium - sulfur battery[J]. Appl. Surf. Sci, 2023,611155690. doi: 10.1016/j.apsusc.2022.155690

    15. [15]

      Kim P J H, Seo J, Fu K, Choi J, Liu Z M, Kwon J, Hu L B, Paik U. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries[J]. NPG Asia Mater, 2017,4(e375).  

    16. [16]

      Huang W L, Wang P Y, Liao X B, Chen Y J, Borovilas J, Jin T W, Li A J, Cheng Q, Zhang Y F, Zhai H W, Chitu A, Shan Z Q, Yang Y. Mechanically-robust structural lithium-sulfur battery with high energy density[J]. Energy Storage Mater, 2020,33(416)422.  

    17. [17]

      Fan Y, Yang Z, Hua W X, Liu D, Tao T, Rahman M M, Lei W W, Huang S M, Chen Y. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries[J]. Adv. Energy Mater, 2017,7(13)1602380. doi: 10.1002/aenm.201602380

    18. [18]

      Song J J, Su D W, Xie X Q, Guo X, Bao W Z, Shao G J, Wang G X. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2016,8(43):29427-29433. doi: 10.1021/acsami.6b09027

    19. [19]

      Gui Y Y, Chen P, Liu D Y, Fan Y, Zhou J, Zhao J X, Liu H, Guo X, Liu W Q, Cheng Y. TiO2 nanotube/RGO modified separator as an effective polysulfide - barrier for high electrochemical performance Li-S batteries[J]. J. Alloy. Compd, 2021,895162495.  

    20. [20]

      Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Adv. Energy Mater, 2019,9(19)1900219. doi: 10.1002/aenm.201900219

    21. [21]

      Wei Z H, Ren Y Q, Sokolowski J, Zhu X D, Wu G. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries[J]. InfoMat, 2020,2(3):483-508. doi: 10.1002/inf2.12097

    22. [22]

      Zhai Q H, Yang J W, Quo W, Quo J X, Gao H J, Li Z X, Wang P, Tang C C, Xue Y M. Ultralight and highly resilient boron nitride nanosheet/polyimide foams for energy harvesting and sensing[J]. ACS Appl. Polym. Mater, 2022,4(5):3236-3246. doi: 10.1021/acsapm.1c01795

    23. [23]

      Reynolds R J W, Seddon J D. Amine salts of polypyromellitamic acids[J]. J. Polym. Sci, 1968,C23:45-56.  

    24. [24]

      Bieker G, Wellmann J, Kolek M, Jalkanen K, Winter M, Bieker P. Influence of cations in lithium and magnesium polysulphide solutions: Dependence of the solvent chemistry[J]. Phys. Chem. Chem. Phys, 2017,19(18):11152-11162. doi: 10.1039/C7CP01238A

    25. [25]

      Qiu W J, An C H, Yan Y W, Xu J, Zhang Z J, Guo W, Wang Z, Zheng Z J, Wang Z B, Deng Q B, Li J S. Suppressed polysulfide shuttling and improved Li+ transport in Li- S batteries enabled by NbN modified PP separator[J]. J. Power Sources, 2019,423:98-105. doi: 10.1016/j.jpowsour.2019.03.070

    26. [26]

      Mondal S, Banthia A K. Low-temperature synthetic route for boron carbide[J]. J. Eur. Ceram. Soc, 2005,25(2/3):287-291.  

    27. [27]

      Ghanbarian M, Nassaj E T, Kariminejad A. Synthesis of nanostructural turbostratic and hexagonal boron nitride coatings on carbon fiber cloths by dip-coating[J]. Surf. Coat. Technol, 2016,288:185-195. doi: 10.1016/j.surfcoat.2016.01.011

    28. [28]

      Kim E, Kim J, Lee T, Kang H, Yu S, Park J W, Lee S G, Li O L, Lee J H. Plasma - engineered organic dyes as efficient polysulfide - mediating layers for high performance lithium-sulfur batteries[J]. Chem. Eng. J, 2022,430132679. doi: 10.1016/j.cej.2021.132679

    29. [29]

      Zhang T, Zhang J, Wen G W, Zhong B, Xia L, Huang X X, Zhao H, Wang H T, Qin L C. Ultra-light h-BCN architectures derived from new organic monomers with tunable electromagnetic wave absorption[J]. Carbon, 2018,136:345-358. doi: 10.1016/j.carbon.2018.05.001

    30. [30]

      Guan C Y, Zhao J J, Jia F C, Zhuang C Q, Bai Y Z, Jiang X. Relationship between chemical compositions of magnetron sputtered B-C-N films and various experimental parameters[J]. Vacuum, 2012,86(10):1499-1504. doi: 10.1016/j.vacuum.2012.03.013

    31. [31]

      Das M, Basu A K, Ghatak S, Joshi A G. Carbothermal synthesis of boron nitride coating on PAN carbon fiber[J]. J. Eur. Ceram. Soc, 2009,29(10):2129-2134. doi: 10.1016/j.jeurceramsoc.2008.12.004

    32. [32]

      SHAO Z T, WU L L, YANG Y, MA X Z, LI L, YE H F, ZHANG X T. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials, 2021,36(1):219-225.  

    33. [33]

      ZHANG M Y, YOU X L, LIU L J, MARU D W, LI Y J, LIU Y N. Biomass derived highly-ordered carbon tube as cathode material for high performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem, 2019,35(8):1493-1499.  

    34. [34]

      Zhou X Y, Liao Q C, Tang J J, Bai T, Chen F, Yang J. A high-level N - doped porous carbon nanowire modified separator for long - life lithium-sulfur batteries[J]. J. Electroanal. Chem, 2016,768:55-61.  

    35. [35]

      Yang S N, Cheng Y, Xiao X, Pang H. Development and application of carbon fiber in batteries[J]. Chem. Eng. J, 2020,384123294.

    36. [36]

      MAO Y, ZHANG C H, ZHANG Y, WANG Q, XU G L, HUANG L, LI J T, SUN S G. Synthesis and electrochemical performance of novel expanded graphite oxide/sulfur composite cathodes for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem, 2013,29(5):889-895.  

    37. [37]

      Li Y J, Fan J M, Zhang J H, Yang J F, Yuan R M, Chang J K, Zheng M S, Dong Q F. A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries[J]. ACS Nano, 2017,11(11):11417-11424.  

    38. [38]

      Zhang Z Y, Yi S, Wei Y J, Bian H Y, Wang R B, Min Y G. Lignin nanoparticle-coated celgard separator for high-performance lithium-sulfur batteries[J]. Polymers, 2019,11(12)1946.  

    39. [39]

      Liu Z E, Hu Z W, Jiang X A, Zhang Y, Wang X W, Zhang S G. Multi-functional ZnS quantum dots/graphene aerogel modified separator for high performance lithium - sulfur batteries[J]. Electrochim. Acta, 2022,42214096.

    40. [40]

      Lin L W, Qi M, Bai Z T, Yan S X, Sui Z Y, Han B H, Liu Y W. Crumpled nitrogen-doped aerogels derived from MXene and pyrrole-formaldehyde as modified separators for stable lithium-sulfur batteries[J]. Appl. Surf. Sci, 2021,555149717.  

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    4. [4]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    5. [5]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    6. [6]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    7. [7]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    8. [8]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    9. [9]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    12. [12]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    13. [13]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    14. [14]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    15. [15]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    16. [16]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    17. [17]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

Metrics
  • PDF Downloads(0)
  • Abstract views(894)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return