Citation: Shi-Peng GAI, Jin-Dou TIAN, Fei-Long JIANG, Qi-Hui CHEN, Mao-Chun HONG. A microporous cobalt-based metal-organic framework for selective gas adsorption[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1014-1022. doi: 10.11862/CJIC.2023.076 shu

A microporous cobalt-based metal-organic framework for selective gas adsorption

Figures(6)

  • Herein, a novel metal-organic framework {[Co(DTBDA)]2·DMF·MeOH}n (FJI-H37) was prepared by solvothermal reaction of cobalt nitrate with ligand 5, 5'-di(1H-1, 2, 4-triazol-1-yl)-(1, 1'-biphenyl)-2, 2'-dicarboxylic acid (H2DTBDA). FJI-H37 not only has 0.69 nm of micropores for gas adsorption but also possesses good thermal stability and organic solvent tolerance. The gas adsorption tests show that FJI-H37 can not only selectively adsorb C2H2 from a C2H2/CO2 (50:50, V/V) mixture with a relatively high adsorption selectivity of 4.2, but also selectively capture CO2 from a CO2/N2 (15:85, V/V) and CO2/CH4 (50:50, V/V) mixture; which can be further confirmed by the dynamic fixedbed breakthrough experiments.
  • 加载中
    1. [1]

      Lin R B, Xiang S C, Xing H B, Zhou W, Chen B L. Exploration of porous metal-organic frameworks for gas separation and purification[J]. Coord. Chem. Rev., 2017,378:87-103.  

    2. [2]

      Granada A, Karra S B, Senkan S M. Conversion of CH4 into C2H2 and C2H4 by the chlorine-catalyzed oxidative-pyrolysis (CCOP) process. 1. Oxidative pyrolysis of CH3Cl[J]. Ind. Eng. Chem. Res., 1987,26(9):1901-1905. doi: 10.1021/ie00069a030

    3. [3]

      Reid C R, Thomas K M. Adsorption kinetics and size exclusion properties of probe molecules for the selective porosity in a carbon molecular sieve used for air separation[J]. J. Phys. Chem. B, 2001,105(43):10619-10629. doi: 10.1021/jp0108263

    4. [4]

      Ding M L, Flaig R W, Jiang H L, Yaghi O M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chem. Soc. Rev., 2019,48(10):2783-2828. doi: 10.1039/C8CS00829A

    5. [5]

      Lee C K, Liu S S, Juang L C, Wang C C, Lin K S, Lyu M D. Application of MCM-41 for dyes removal from wastewater[J]. J. Hazard. Mater., 2007,147(3):997-1005. doi: 10.1016/j.jhazmat.2007.01.130

    6. [6]

      Yousef A M, El-Maghlany W M, Eldrainy Y A, Attia A. Low-temperature distillation process for CO2/CH4 separation: A study for avoiding CO2 freeze-out[J]. J. Heat Transf.-Trans. ASME, 2018,140(4)042001. doi: 10.1115/1.4038193

    7. [7]

      Li L B, Lin R B, Krishna R, Li H, Xiang S C, Wu H, Li J P, Zhou W, Chen B L. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018,362(6413):443-446. doi: 10.1126/science.aat0586

    8. [8]

      Cui W G, Hu T L, Bu X H. Metal-organic framework materials for the separation and purification of light hydrocarbons[J]. Adv. Mater., 2020,32(3)1806445. doi: 10.1002/adma.201806445

    9. [9]

      Wang T, Lin E, Peng Y L, Chen Y, Cheng P, Zhang Z J. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation[J]. Coord. Chem. Rev., 2020,423213485. doi: 10.1016/j.ccr.2020.213485

    10. [10]

      Herm Z R, Bloch E D, Long J R. Hydrocarbon separations in metalorganic frameworks[J]. Chem. Mat., 2014,26(1):323-338. doi: 10.1021/cm402897c

    11. [11]

      Getman R B, Bae Y S, Wilmer C E, Snurr R Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks[J]. Chem. Rev., 2012,112(2):703-723. doi: 10.1021/cr200217c

    12. [12]

      Shu Y, Ye Q Y, Dai T, Xu Q, Hu X Y. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing[J]. ACS Sens., 2021,6(3):641-658. doi: 10.1021/acssensors.0c02562

    13. [13]

      Suresh K, Matzger A J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework(MOF)[J]. Angew. Chem. Int. Ed., 2019,58(47):16790-16794. doi: 10.1002/anie.201907652

    14. [14]

      Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal- organic framework materials as chemical sensors[J]. Chem. Rev., 2012,112(2):1105-1125. doi: 10.1021/cr200324t

    15. [15]

      Shi Z Q, Ji N N, Wang M H, Li G. A comparative study of proton conduction between a 2D zinc(Ⅱ) MOF and its corresponding organic ligand[J]. Inorg. Chem., 2020,59(7):4781-4789. doi: 10.1021/acs.inorgchem.0c00053

    16. [16]

      ZHAO M, WU D, JIANG F L, CHEN Q H, HONG M C. A flexible ultramicroporous metal-organic framework for size-selective carbon dioxide capture constructed from a semirigid ligand[J]. Chinese J. Inorg. Chem., 2022,38(12):2459-2468. doi: 10.11862/CJIC.2022.256 

    17. [17]

      Wu D, Zhou K, Tian J Y, Liu C P, Jiang F L, Yuan D Q, Chen Q H, Hong M C. A tubular luminescent framework: Precise decoding of nitroaniline isomers and quantitative detection of traces of benzaldehyde in benzyl alcohol[J]. J. Mater. Chem. C, 2020,8(29):9828-9835. doi: 10.1039/D0TC01743D

    18. [18]

      Wu D, Zhou K, Tian J D, Liu C P, Tian J Y, Jiang F L, Yuan D Q, Zhang J, Chen Q H, Hong M C. Induction of chirality in a metal-organic framework built from achiral precursors[J]. Angew. Chem. Int. Ed., 2021,60(6):3087-3094. doi: 10.1002/anie.202013885

    19. [19]

      Tian J Y, Shi C D, Xiao C, Jiang F L, Yuan D Q, Chen Q H, Hong M C. Introduction of flexibility into a metal-organic framework to promote Hg (Ⅱ) capture through adaptive deformation[J]. Inorg. Chem., 2020,59(24):18264-18275. doi: 10.1021/acs.inorgchem.0c02781

    20. [20]

      Zhang C, Luo Y X, Li Y, Zhao B Y, Yang Z X, Li X T, Duan J G, Zhao Y G, Lin Z H, Huang W. Ligand-directed dimensionality control over Zr-based metal-organic materials: From an extended framework to a discrete metal-organic cage and macrocycle[J]. Cryst. Growth Des., 2022,22(11):6384-6389. doi: 10.1021/acs.cgd.2c00803

    21. [21]

      Yu J, Zhang J, Zhang P, Wang Y, Li S N, Zhai Q G. Controllable inverse C2H2/CO2 separation in ultra-stable Zn-organic frameworks for efficient removal of trace CO2 from acetylene[J]. J. Mater. Chem. A, 2022,10(44):23630-23638. doi: 10.1039/D2TA07473G

    22. [22]

      Wang J W, Fan S C, Li H P, Bu X H, Xue Y Y, Zhai Q G. De-linkerenabled exceptional volumetric acetylene storage capacity and benchmark C2H2/C2H4 and C2H2/CO2 separations in metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2023,62(10)e202217839.

    23. [23]

      Nian M J, Ge K, Zhao J X, Shen Y B, Duan Y F, Wu Y X, Duan J G. Orienting of metal-organic framework nanosheets into continuous membranes for fast hydrogen permeation[J]. J. Membr. Sci., 2023,672121447. doi: 10.1016/j.memsci.2023.121447

    24. [24]

      Li S Y, Yan X, Lei J, Ji W J, Fan S C, Zhang P, Zhai Q G. High-performance turn-on fluorescent metal-organic framework for detecting trace water in organic solvents based on the excited-state intramolecular proton transfer mechanism[J]. ACS Appl. Mater. Interfaces, 2022,14(50):55997-56006. doi: 10.1021/acsami.2c19916

    25. [25]

      Tian J D, Chen Q H, Jiang F L, Yuan D Q, Hong M C. Optimizing acetylene sorption through induced-fit transformations in a chemically stable microporous framework[J]. Angew. Chem. Int. Ed., 2023,62(7)e202215253.

    26. [26]

      Wu D, Liu C P, Tian J Y, Jiang F L, Yuan D Q, Chen Q H, Hong M C. Acid-base-resistant metal-organic framework for size-selective carbon dioxide capture[J]. Inorg. Chem., 2020,59(18):13542-13550. doi: 10.1021/acs.inorgchem.0c01912

    27. [27]

      Yang L Z, Yan L T, Wang Y, Liu Z, He J X, Fu Q J, Liu D D, Gu X, Dai P C, Li L J, Zhao X B. Adsorption site selective occupation strategy within a metal-organic framework for highly efficient sieving acetylene from carbon dioxide[J]. Angew. Chem. Int. Ed., 2021,60(9):4570-4574. doi: 10.1002/anie.202013965

    28. [28]

      Scott H S, Shivanna M, Bajpai A, Madden D G, Chen K J, Pham T, Forrest K A, Hogan A, Space B, Perry J J, Zaworotko M J. Highly selective separation of C2H2 from CO2 by a new dichromate-based hybrid ultramicroporous material[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33395-33400. doi: 10.1021/acsami.6b15250

    29. [29]

      Guo Z Y, Yan D, Wang H L, Tesfagaber D, Li X L, Chen Y S, Huang W Y, Chen B L. A three-dimensional microporous metal-metallopor-phyrin framework[J]. Inorg. Chem., 2015,54(1):200-204. doi: 10.1021/ic502116k

    30. [30]

      Liu S, Dong Q B, Wang D Q, Wang Y, Wang H J, Huang Y H, Wang S N, Liu L T, Duan J G. Interplay of tri-and bidentate linkers to evolve micropore environment in a family of quasi-3D and 3D porous coordination polymers for highly selective CO2 capture[J]. Inorg. Chem., 2019,58(23):16241-16249. doi: 10.1021/acs.inorgchem.9b02774

    31. [31]

      Fu X P, Wang Y L, Zhang X F, Krishna R, He C T, Liu Q Y, Chen B L. Collaborative pore partition and pore surface fluorination within a metal-organic framework for high-performance C2H2/CO2 separation[J]. Chem. Eng. J., 2022,432134433. doi: 10.1016/j.cej.2021.134433

    32. [32]

      Chang G G, Li B, Wang H L, Hu T L, Bao Z B, Chen B L. Control of interpenetration in a microporous metal-organic framework for significantly enhanced C2H2/CO2 separation at room temperature[J]. Chem. Commun., 2016,52(17):3494-3496. doi: 10.1039/C5CC10598F

    33. [33]

      Li N, Chang Z, Huang H L, Feng R, He W W, Zhong M, Madden D G, Zaworotko M J, Bu X H. Specific K+ binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption[J]. Small, 2019,15(22)e1900426. doi: 10.1002/smll.201900426

    34. [34]

      Zhang D S, Zhang Y Z, Zhang X L, Wang F, Zhang J, Hu H, Gao J, Yan H, Liu H L, Ma H Y, Geng L L, Li Y W. Nanocage-based porous metal-organic frameworks constructed from icosahedrons and tetrahedrons for selective gas adsorption[J]. ACS Appl. Mater. Interfaces, 2019,11(22):20104-20109. doi: 10.1021/acsami.9b05655

    35. [35]

      Liang L F, Liu C P, Jiang F L, Chen Q H, Zhang L J, Xue H, Jiang H L, Qian J J, Yuan D Q, Hong M C. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework[J]. Nat. Commun., 2017,81233. doi: 10.1038/s41467-017-01166-3

    36. [36]

      Humby J D, Benson O, Smith G L, Argent S P, da Silva I, Cheng Y, Rudic S, Manuel P, Frogley M D, Cinque G, Saunders L K, Vitorica-Yrezabal I J, Whitehead G F S, Easun T L, Lewis W, Blake A J, Ramirez-Cuesta A J, Yang S, Schroder M. Host-guest selectivity in a series of isoreticular metal-organic frameworks: Observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions[J]. Chem. Sci., 2019,10(4):1098-1106. doi: 10.1039/C8SC03622E

    37. [37]

      Song X H, Zhang M X, Duan J G, Bai J F. Constructing and finely tuning the CO2 traps of stable and various-pore-containing MOFs towards highly selective CO2 capture[J]. Chem. Commun., 2019,55(24):3477-3480. doi: 10.1039/C8CC10116G

    38. [38]

      Yu M H, Zhang P, Feng R, Yao Z Q, Yu Y C, Hu T L, Bu X H. Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture[J]. ACS Appl. Mater. Interfaces, 2017,9(31):26177-26183. doi: 10.1021/acsami.7b06491

    39. [39]

      Zhang J W, Qu P, Hu M C, Li S N, Jiang Y C, Zhai Q G. Topology-guided design for Sc-soc-MOFs and their enhanced storage and separation for CO2 and C2-hydrocarbons[J]. Inorg. Chem., 2019,58(24):16792-16799. doi: 10.1021/acs.inorgchem.9b02959

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(0)
  • Abstract views(924)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return