Citation: Jian-Wei ZHAO, Kun-Yan SHEN, Xiao-Hui YU, Jin HOU. Temperature dependence and correlation of initial microstructural defects and breaking[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1193-1207. doi: 10.11862/CJIC.2023.075 shu

Temperature dependence and correlation of initial microstructural defects and breaking

Figures(10)

  • The microstructural defects within the nanowire (NW) have a significant impact on the mechanical properties of the NW. The prediction of the breaking position of the NW has raised concerns owning to it is a crucial point in the application of nanodevices. In this work, based on the statistical analysis, the breaking positions and the positions of the initial microstructural defects generated at the stress yield point are studied separately to analyze their temperature dependence, then further investigate the relationship between the breaking failure and the initial microstructural defects. At the temperature range from 20 to 300 K, including six ensembles, the single - crystal Cu NWs have been performed using molecular dynamics (MD) simulations. The ensemble at each temperature includes 300 independent samples. Based on machine learning, the hexagonal close - packed (hcp) atoms at the stress yield point have been clustered to every initial microstructural defect by the density - based spatial clustering of applications with noise (DBSCAN) algorithm. According to the statistical results, it is found that the initial microstructural defects of NWs simulated in this paper tend to generate at the two ends of the NW while the temperature is less than 50 K. Following the increasing temperature, the MD simulation results have shown a strong temperature dependence of mechanical properties for the single - crystal Cu NWs, including Young′s modulus, average yield stress, average potential energy, etc. It is attributed that there are more initial microstructural defects generated as the increase in temperature, and the positions of initial microstructural defects are averaged out from the two ends of the distribution towards the middle part. The breaking positions for all the simulation temperatures are mainly concentrated on the ends of the NW. The statistical results indicate that this temperature range has little effect on breaking position but a great effect on the initial microstructural defects. It shows a consistency between the initial slip distributions and breaking distributions while the temperature is less than 100 K. However, it has been observed that the differences between them are gradually shown with the increase in temperature due to their different temperature dependents. The microstructural deformation behaviors under different temperatures reveal that the breaking failure is affected by the surface effect and blocking effect of the ends. Based on the results, the final breaking position is correlated to the middle and late stages of the plastic deformation rather than the positions of initial microstructural defects first generated.
  • 加载中
    1. [1]

      Francis M K, Sahu B K, Bhargav P B, Balaji C, Ahmed N, Das A, Dhara S. Ag nanowires based SERS substrates with very high enhancement factor[J]. Phys. E, 2022,137115080. doi: 10.1016/j.physe.2021.115080

    2. [2]

      Li H L, Ding J W, Cai S F, Zhang W, Zhang X N, Wu T, Wang C, Foss M, Yang R. Plasmon-enhanced photocatalytic properties of Au/ZnO nanowires[J]. Appl. Surf. Sci., 2022,583152539. doi: 10.1016/j.apsusc.2022.152539

    3. [3]

      Lee J K, Kim B O, Park J, Kim J B, Kang I S, Sim G, Park J H, Jang H I. A bilayer Al nanowire-grid polarizer integrated with an IR-cut filter[J]. Opt. Mater., 2019,98109409. doi: 10.1016/j.optmat.2019.109409

    4. [4]

      Yu S H, Liu Z W, Zhao L, Gong B M. High-performance flexible transparent conductive tape based on copper nanowires[J]. Opt. Mater., 2021,119111301. doi: 10.1016/j.optmat.2021.111301

    5. [5]

      Yin C G, Liu Z J, Mo R, Fan J C, Shi P H, Xu Q J, Min Y L. Copper nanowires embedded in boron nitride nanosheet-polymer composites with enhanced thermal conductivities for thermal management[J]. Polymer, 2020,195122455. doi: 10.1016/j.polymer.2020.122455

    6. [6]

      Guo Z G, Sun C, Zhao J, Cai Z S, Ge F Y. Low-voltage electrical heater based on one-step fabrication of conductive Cu nanowire networks for application in wearable device[J]. Adv. Mater. Interfaces, 2021,8(3)2001695. doi: 10.1002/admi.202001695

    7. [7]

      Patella B, Russo R R, O′Riordan A, Aiello G, Sunseri C, Inguanta R. Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water[J]. Talanta, 2021,221121643. doi: 10.1016/j.talanta.2020.121643

    8. [8]

      Yang J P, Yu F Y, Chen A, Zhao S W, Zhao Y, Zhang S S, Sun T, Hu G Z. Synthesis and application of silver and copper nanowires in high transparent solar cells[J]. Adv. Powder Mater., 2022,1(4)100045. doi: 10.1016/j.apmate.2022.100045

    9. [9]

      Li D D, Lai W Y, Zhang Y Z, Huang W. Printable transparent conductive films for flexible electronics[J]. Adv. Mater., 2018,30(10)1704738. doi: 10.1002/adma.201704738

    10. [10]

      Xie H X, Yin F X, Yu T, Lu G H, Zhang Y G. A new strain-rate-induced deformation mechanism of Cu nanowire: Transition from dislocation nucleation to phase transformation[J]. Acta Mater., 2015,85:191-198. doi: 10.1016/j.actamat.2014.11.017

    11. [11]

      Li X Q, Minor A M. Precise measurement of activation parameters for individual dislocation nucleation during in situ TEM tensile testing of single crystal nickel[J]. Scr. Mater., 2021,197113764. doi: 10.1016/j.scriptamat.2021.113764

    12. [12]

      Wang L H, Zhang Y, Zeng Z, Zhou H, He J, Liu P, Chen M W, Han J, Srolovitz D J, Teng J. Tracking the sliding of grain boundaries at the atomic scale[J]. Science, 2022,375(6586)1261. doi: 10.1126/science.abm2612

    13. [13]

      Yu Y F, Cui J Z. Elastic - plastic deformation decomposition algorithm for metal clusters at the atomic scale[J]. Comput. Mech., 2021,67:567-581. doi: 10.1007/s00466-020-01948-5

    14. [14]

      Guder V, Sengul S. Tensile strength and failure mechanism of hcp zirconium nanowires: Effect of diameter, temperature and strain rate[J]. Comput. Mater. Sci., 2020,177109551. doi: 10.1016/j.commatsci.2020.109551

    15. [15]

      Traiviratana S, Bringab E M, Benson D J, Meyers M A. Void growth in metals: Atomistic calculations[J]. Acta Mater., 2008,56(15):3874-3886. doi: 10.1016/j.actamat.2008.03.047

    16. [16]

      Yang Z, Huang Y H, Ma F, Sun Y J, Xu K W, Chu P K. Size-dependent deformation behavior of nanocrystalline graphene sheets[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2015,198:95-101. doi: 10.1016/j.mseb.2015.03.019

    17. [17]

      Ritter Y, Şopu D, Gleiter H, Albe K. Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations[J]. Acta Mater., 2011,59(17):6588-6593. doi: 10.1016/j.actamat.2011.07.013

    18. [18]

      Tang Y Z, Bringa E M, Meyers M A. Ductile tensile failure in metals through initiation and growth of nanosized voids[J]. Acta Mater., 2012,60(12):4856-4865. doi: 10.1016/j.actamat.2012.05.030

    19. [19]

      Cheng N, Chen F, Li R, Durkan C, Wang N, Zhao J W. Correlation between the microstructure and the deformation behaviour of metallic nanowires[J]. Comput. Mater. Sci., 2019,168:116-124. doi: 10.1016/j.commatsci.2019.06.003

    20. [20]

      Pang W W, Yu S Y, Lin Z J, Zhao Y Z, Yin F X. Effects of crystal orientation and temperature on the deformation mechanism and mechanical property of Cu nanowire[J]. Micro Nano Lett., 2020,15(4):261-265. doi: 10.1049/mnl.2019.0559

    21. [21]

      Yoon J, Jang Y, Kim K, Kim J, Son S, Lee Z. In situ tensile and fracture behavior of monolithic ultra - thin amorphous carbon in TEM[J]. Carbon, 2022,196:236-242. doi: 10.1016/j.carbon.2022.04.062

    22. [22]

      Liu Z L, Yuan X M, Wang S L, Liu S, Tan H H, Jagadish C. Nanomechanical behavior of single taper-free GaAs nanowires unravelled by in-situ TEM mechanical testing and molecular dynamics simulation[J]. Mater. Sci. Eng. A - Struct. Mater. Prop. Microstruct. Process., 2021,806140866. doi: 10.1016/j.msea.2021.140866

    23. [23]

      Song B, Loya P, Shen L L, Sui C, He L, Guo H, Guo W H, Rodrigues Marco T F, Dong P, Wang C, He X D, Ajayan P M, Lou J. Quantitative in situ fracture testing of tin oxide nanowires for lithium ion battery applications[J]. Nano Energy, 2018,53:277-285. doi: 10.1016/j.nanoen.2018.08.057

    24. [24]

      Li P T, Yang Y Q, Koval V, Luo X, Chen J X, Zhang W, Lin E E, Wang B W, Yan H X. Temperature-dependent deformation in silver-particle - covered copper nanowires by molecular dynamics simulation[J]. J. Materiomics, 2022,8(68)78.  

    25. [25]

      Wang F Y, Sun W, Gao Y J, Liu Y H, Zhao J W, Sun C Q. Investigation on the most probable breaking behaviors of copper nanowires with the dependence of temperature[J]. Comput. Mater. Sci., 2013,67:182-187. doi: 10.1016/j.commatsci.2012.07.048

    26. [26]

      Liu Y H, Zhao J W. The size dependence of the mechanical properties and breaking behavior of metallic nanowires: A statistical description[J]. Comput. Mater. Sci., 2011,50(4):1418-1424. doi: 10.1016/j.commatsci.2010.11.026

    27. [27]

      Wang D X, Zhao J W, Hu S, Yin X, Liang S, Liu Y H, Deng S Y. Where, and how, does a nanowire break?[J]. Nano Lett., 2007,7(5):1208-1212. doi: 10.1021/nl0629512

    28. [28]

      Cui Y, Toku Y, Kimura Y, Ju Y. The deformation mechanism in cold-welded gold nanowires due to dislocation emission[J]. Comput. Mater. Sci., 2021,188110214. doi: 10.1016/j.commatsci.2020.110214

    29. [29]

      Shen K Y, Cheng N, Zhao J W, Hou J. Correlation between the breaking behavior and the initial microstructural defects of the metallic nanowires: An approach from statistical analysis[J]. Comput. Mater. Sci., 2022,213111486. doi: 10.1016/j.commatsci.2022.111486

    30. [30]

      Niu S C, Chang X T, Zhu Z H, Qin Z W, Li J F, Jiang Y C, Wang D S, Yang C X, Gao Y, Sun S B. Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance[J]. ACS Appl. Mater. Interfaces, 2021,13(46):55307-55318. doi: 10.1021/acsami.1c14671

    31. [31]

      Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Phys. Rev. B, 1999,59:3393-3407. doi: 10.1103/PhysRevB.59.3393

    32. [32]

      Johnson R A. Relationship between defect energies and embedded-atom-method parameters[J]. Phys. Rev. B, 1988,376121. doi: 10.1103/PhysRevB.37.6121

    33. [33]

      Johnson R A. Alloy models with the embedded-atom method[J]. Phys. Rev. B, 1989,3912554. doi: 10.1103/PhysRevB.39.12554

    34. [34]

      Sun Y L, Sun W, Fu Y Q, Wang F Y, Gao Y J, Zhao J W. The deformation behaviors of silver nanowires including 3D defects under tension[J]. Comput. Mater. Sci., 2013,79:63-68. doi: 10.1016/j.commatsci.2013.06.004

    35. [35]

      LI R, ZHAO J W, HOU J, HE Y Y, CHENG N. Effect of the convex and the concave microstructures in the metallic nanowires on the initial deformation behavior[J]. Chem. J. Chinese Universities, 2018,39(3):514-520.  

    36. [36]

      Zhao J W, Yin X, Liang S, Liu Y H, Wang D X, Deng S Y, Hou J. Ultra-large scale molecular dynamics simulation for nano-engineering[J]. Chem. Res. Chin. Univ., 2008,24(3):367-370. doi: 10.1016/S1005-9040(08)60077-X

    37. [37]

      Morales J J, Rull L F, Toxvaerd S. Efficiency test of the traditonal MD and the link - cell methods, computer physics communications[J]. Comput. Phys. Commun., 1989,56(2):129-134. doi: 10.1016/0010-4655(89)90013-1

    38. [38]

      Hockney R W, Eastwood J W. Computer simulation using particles[J]. SIAM Rev., 1983,25(3):425-426. doi: 10.1137/1025102

    39. [39]

      Wu H A. Molecular dynamics study of the mechanics of metal nanowires at finite temperature[J]. Eur. J. Mech. A-Solids, 2006,25(2):370-377. doi: 10.1016/j.euromechsol.2005.11.008

    40. [40]

      Foiles S M, Baskes M I, Daw M S. Embedded- atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Phys. Rev. B, 1988,37(17)10378.  

    41. [41]

      Rapaport D C. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge University Press, 2004.

    42. [42]

      Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation[J]. Phys. Rev. B, 1998,58:11085-11088. doi: 10.1103/PhysRevB.58.11085

    43. [43]

      Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231

    44. [44]

      Li J G, Lei X, Ding J H, Gao Z X, Wang H, Shi Y L. Surface effect on size dependent Young′s modulus of nanowires: Exponentially decreased surface elasticity model[J]. Mater. Lett., 2022,307131001. doi: 10.1016/j.matlet.2021.131001

    45. [45]

      So S H, Jang J H, Sung S J, Yang S J, Nam K T, Park C R. Demonstration of the nanosize effect of carbon nanomaterials on the dehydrogenation temperature of ammonia borane[J]. Nanoscale Adv., 2019,1:4697-4703. doi: 10.1039/C9NA00501C

    46. [46]

      Cao H, Rui Z Y, Yang F Q. Mechanical properties of Cu nanowires: Effects of cross-sectional area and temperature[J]. Mater. Sci. Eng. AStruct. Mater. Prop. Microstruct. Process., 2020,791139644. doi: 10.1016/j.msea.2020.139644

    47. [47]

      Alian A R, Ju Y, Meguid S A. Comprehensive atomistic modeling of copper nanowires-based surface connectors[J]. Mater. Des., 2019,175107812. doi: 10.1016/j.matdes.2019.107812

    48. [48]

      ZHAO J W, LI R, CHENG N, HOU J. The influence of the initial structure in the silver nanowire on the deformation mechanism and the distribution of the breaking positions[J]. Scientia Sinica Technologica, 2018,48(2):143-153.  

    49. [49]

      Sung P H, Wu C D, Fang T H. Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation[J]. J. Phys. D-Appl. Phys., 2012,45215303. doi: 10.1088/0022-3727/45/21/215303

    50. [50]

      Liu Y H, Zhao J W, Wang F Y. Influence of length on shock-induced breaking behavior of copper nanowires[J]. Phys. Rev. B, 2009,80115417. doi: 10.1103/PhysRevB.80.115417

    51. [51]

      FENG D, SHI C X, LIU Z G. Introduction to materials science. Beijing: Chemical Industry Press, 2004.

    52. [52]

      Sun J P, Fang L, Ma A, Jiang J H, Han Y, Chen H W, Han J. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation[J]. Mater. Sci. Eng. A - Struct. Mater. Prop. Microstruct. Process., 2015,634:86-90. doi: 10.1016/j.msea.2015.03.034

    53. [53]

      Sainath G, Choudhary B K, Jayakumar T. Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires[J]. Comput. Mater. Sci., 2015,104:76-83. doi: 10.1016/j.commatsci.2015.03.053

    54. [54]

      Xie Z C, Shin J, Renner J, Prakash A, Gianola D S, Bitzek E. Origins of strengthening and failure in twinned Au nanowires: Insights from in - situ experiments and atomistic simulations[J]. Acta Mater., 2020,187:166-175. doi: 10.1016/j.actamat.2020.01.038

    55. [55]

      ZHAO J W, LI R, HOU J, CHENG N. Statistical analysis of the breaking behaviors of metallic nanowires and correlation with the initial microstructure[J]. Scientia Sinica Technologica, 2018,48(7):719-728.  

  • 加载中
    1. [1]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    7. [7]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    10. [10]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    11. [11]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    12. [12]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    13. [13]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    14. [14]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    15. [15]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    16. [16]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    17. [17]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    18. [18]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    19. [19]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    20. [20]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

Metrics
  • PDF Downloads(0)
  • Abstract views(1003)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return