Citation: Sheng-Yang HAO, Yu-Ting ZHANG, Xiao-Qing WANG. Preparation and supercapacitor performance of Mo-doped NiMnSe2[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1091-1102. doi: 10.11862/CJIC.2023.072 shu

Preparation and supercapacitor performance of Mo-doped NiMnSe2

  • Corresponding author: Xiao-Qing WANG, Xiaoqingwang2012@126.com
  • Received Date: 15 November 2022
    Revised Date: 20 April 2023

Figures(9)

  • In this work, we applied a simple hydrothermal method to grow a Mo-doped NiMnSe2 without binding reagent on the foam nickel (noted as Ni0.8Mo0.2MnSe2). Small amount of Mo substitution for Ni can provide rich reactive sites and therefore greatly enhances the electrochemical performance of NiMnSe2. The specific capacity of Ni0.8Mo0.2MnSe2 at 1 A·g-1 reached 1 404.0 F·g-1. Mo substitution can also decrease the charge transfer resistance and diffusion resistance as well as improve the stability of the material structure. The Ni0.8Mo0.2MnSe2//AC (activated carbon) hybrid supercapacitor (HSC) delivered capacity of 81.6 F·g-1 and exhibited excellent rate performance. After 10 000 cycles at 2 A·g-1, the Ni0.8Mo0.2MnSe2//AC HSC maintained 95.8% of the capacity, indicating a high cycling stability. Under the power density of 376.6 W·kg-1, the Ni0.8Mo0.2MnSe2//AC HSC showed an energy density of 25.5 Wh·kg-1, higher than those of other similar supercapacitor, implying a high energy storage ability.
  • 加载中
    1. [1]

      Chen R, Yu M, Sahu R P, Puri I K, Zhitomirsky I. The development of pseudocapacitor electrodes and devices with high active mass loading[J]. Adv. Energy Mater., 2020,10(20)1903848. doi: 10.1002/aenm.201903848

    2. [2]

      Liu J L, Wang J, Xu C H, Jiang H, Li C Z, Zhang L L, Lin J Y, Shen Z X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design[J]. Adv. Sci., 2018,5(1)1700322. doi: 10.1002/advs.201700322

    3. [3]

      Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Design and mechanisms of asymmetric supercapacitors[J]. Chem. Rev., 2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252

    4. [4]

      Ghosh S, Samanta P, Murmu N C, Kuila T. Investigation of electrochemical charge storage in nickel-cobalt-selenide/reduced graphene oxide composite electrode and its hybrid supercapacitor device[J]. J. Alloy. Compd., 2020,835155432. doi: 10.1016/j.jallcom.2020.155432

    5. [5]

      Zhao X, Mao L, Cheng Q H, Li J, Liao F F, Yang G Y, Xie L, Zhao C L, Chen L Y. Two-dimensional spinel structured Co-based materials for high performance supercapacitors: A critical review[J]. Chem. Eng. J., 2020,387124081. doi: 10.1016/j.cej.2020.124081

    6. [6]

      Dan H M, Tao K Y, Hai Y, Liu L, Gong Y. (Co, Mn) -doped NiSe2-diethylenetriamine (dien) nanosheets and (Co, Mn, Sn)-doped NiSe2 nanowires for high performance supercapacitors: Compositional/morphological evolution and (Co, Mn) -induced electron transfer[J]. Nanoscale, 2019,11(36):16810-16827. doi: 10.1039/C9NR04478G

    7. [7]

      Miao C X, Xu P P, Zhao J, Zhu K, Cheng K, Ye K, Yan J, Cao D X, Wang G L, Zhang X F. Binder-free hierarchical urchin-like manganesecobalt selenide with high electrochemical energy storage performance[J]. ACS Appl. Energy Mater., 2019,2(5):3595-3604. doi: 10.1021/acsaem.9b00338

    8. [8]

      Quan L, Liu T Q, Yi M J, Chen Q D, Cai D P, Zhan H B. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance[J]. Electrochim. Acta, 2018,281:109-116. doi: 10.1016/j.electacta.2018.05.100

    9. [9]

      Miao C X, Zhou C L, Wang H E, Zhu K, Ye K, Wang Q, Yan J, Cao D X, Li N, Wang G L. Hollow Co-Mo -Se nanosheet arrays derived from metal-organic framework for high -performance supercapacitors[J]. J. Power Sources, 2021,490229532. doi: 10.1016/j.jpowsour.2021.229532

    10. [10]

      Ameri B, Mohammadi Z A, Hosseiny D S S. Metal -organic -framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors[J]. Dalton Trans., 2021,50(24):8372-8384. doi: 10.1039/D1DT01215K

    11. [11]

      Du W, Zong Q, Zhan J H, Yang H, Zhang Q L. Tailoring Mo-doped Nicop grown on (Ni, Co)Se2 nanoarrays for asymmetric supercapacitor with enhanced electrochemical performance[J]. ACS Appl. Energy Mater., 2021,4(7):6667-6677. doi: 10.1021/acsaem.1c00747

    12. [12]

      Heiba Z K, Farag N M, El-naggar A M, Abdellatief M, Aldhafiri A M, Mohamed M B. Effect of Mo-doping on the structure, magnetic and optical characteristics of nano CuCo2O4[J]. J. Mater. Res. Technol., 2021,10:832-839. doi: 10.1016/j.jmrt.2020.12.056

    13. [13]

      Li Q, Guo H, Xue R, Wang M Y, Xu M N, Yang W H, Zhang J Y, Yang W. Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device[J]. Int. J. Hydrog. Energy, 2020,45(41):20820-20831. doi: 10.1016/j.ijhydene.2020.05.143

    14. [14]

      Xiong S S, Weng S T, Tang Y, Qian L, Xu Y Q, Li X F, Lin H J, Xu Y C, Jiao Y, Chen J R. Mo-doped Co3O4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting[J]. J. Colloid Interface Sci., 2021,602:355-366. doi: 10.1016/j.jcis.2021.06.019

    15. [15]

      Li H S, Xuan H C, Guan Y Y, Zhang G H, Wang R, Liang X H, Xie Z G, Han P D, Wu Y C. Preparation and characterization of three-dimensional Mn-Mo-S composites on rGo/Ni foam for battery-supercapacitor electrode with high-performance[J]. Electrochim. Acta, 2020,345136260. doi: 10.1016/j.electacta.2020.136260

    16. [16]

      Vidhya M. S, Yuvakkumar R, Ravi G, Babu E S, Saravanakumar B, Nasif O, Alharbi S A, Velauthapillai D. Demonstration of 1.5 V asymmetric supercapacitor developed using MnSe2-CoSe2 metal composite[J]. Ceram. Interfaces, 2021,47(8):11786-11792.  

    17. [17]

      Hu X M, Liu S C, Chen Y K, Jiang J B, Cong H S, Tang J B, Sun Y X, Han S, Lin H L. Rational design of flower-like cobalt-manganese-sulfide nanosheets for high performance supercapacitor electrode materials[J]. New J. Chem., 2020,44(27):11786-11795. doi: 10.1039/D0NJ01727B

    18. [18]

      Li Y F, Wu X, Pang L J, Miao Y D, Ye A, Sui Y W, Qi J Q, Wei F X, Meng Q K, He Y Z, Zhan Z Z, Ren Y J, Sun Z. Self-supported NiSe@Ni3S2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor[J]. Ionics, 2020,26(8):3997-4007. doi: 10.1007/s11581-019-03413-7

    19. [19]

      Deka B K, Hazarika A, Lee S, Kim D Y, Park Y B, Park H W. Triboelectric-nanogenerator -integrated structural supercapacitor based on highly active P-doped branched Cu-Mn selenide nanowires for efficient energy harvesting and storage[J]. Nano Energy, 2020,73104754. doi: 10.1016/j.nanoen.2020.104754

    20. [20]

      Wu S, Hu Q Z, Wu L, Li J, Peng H, Yang Q L. One-step solvothermal synthesis of nickel selenide nanoparticles as the electrode for high-performance supercapacitors[J]. J. Alloy. Compd., 2019,784:347-353. doi: 10.1016/j.jallcom.2019.01.026

    21. [21]

      Guo D X, Zhang Y, Sun W F, Chu D W, Li B N, Tan L C, Ma H Y, Pang H J, Wang X M, Zhang L L. Facile dual -ligand modulation tactic toward nickel-cobalt sulfides/phosphides/selenides as supercapacitor electrodes with long-term durability and electrochemical activity[J]. ACS Appl. Mater. Interfaces, 2019,11(44):41580-41587. doi: 10.1021/acsami.9b11894

    22. [22]

      Lin J H, Wang H H, Yan Y T, Zheng X H, Jia H N, Qi J L, Cao J, Tu J C, Fei W D, Feng J C. Core -branched CoSe2/Ni0.85Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors[J]. J. Mater. Chem., 2018,6(39):19151-19158. doi: 10.1039/C8TA08263D

    23. [23]

      Subhadarshini S, Pavitra E, Rama R G S, Chodankar N R, Goswami D K, Han Y K, Huh Y S, Das N C. One-dimensional NiSe-Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors[J]. ACS Appl. Mater. Interfaces, 2020,12(26):29302-29315.  

    24. [24]

      Ma F, Lu J H, Pu L Y, Wang W, Dai Y T. Construction of hierarchical cobalt-molybdenum selenide hollow nanospheres architectures for high performance battery-supercapacitor hybrid devices[J]. J. Colloid Interf. Sci., 2020,563:435-446. doi: 10.1016/j.jcis.2019.12.101

    25. [25]

      Shi M M, Zhao M S, Jiao L D, Su Z, Li M, Song X P. Novel Mo -doped nickel sulfide thin sheets decorated with Ni-Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery[J]. J. Power Sources, 2021,509230333. doi: 10.1016/j.jpowsour.2021.230333

    26. [26]

      Zong Q, Zhu Y L, Wang Q Q, Yang H, Zhang Q L, Zhan J H, Du W. Prussian blue analogues anchored P-(Ni, Co)Se2 nanoarrays for high performance all-solid-state supercapacitor[J]. Chem. Eng. J., 2020,392123664. doi: 10.1016/j.cej.2019.123664

    27. [27]

      Yang X, Mao J J, Niu H, Wang Q, Zhu K, Ye K, Wang G, Cao D X, Yan J. NiS 2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors[J]. Chem. Eng. J., 2021,406126713. doi: 10.1016/j.cej.2020.126713

    28. [28]

      Gu Y P, Du W M, Darrat Y, Saleh M, Huang Y X, Zhang Z Y, Wei S H. In situ growth of novel nickel diselenide nanoarrays with high spe-cific capacity as the electrode material of flexible hybrid supercapac-itors[J]. Appl. Nanosci., 2019,10(5):1591-1601. doi: 10.1007/s13204-019-01234-8

    29. [29]

      Liu Y H, Li W L, Chang X W, Chen H, Zheng X L, Bai J B, Ren Z. MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability[J]. J. Colloid Interface Sci., 2020,562:483-492. doi: 10.1016/j.jcis.2019.11.089

    30. [30]

      Zhao L C, Zhang P, Zhang Y N, Zhang Z, Yang L, Chen Z G. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors[J]. J. Mater. Sci. Technol., 2020,54:69-76. doi: 10.1016/j.jmst.2020.02.063

    31. [31]

      Tavakoli F, Rezaei B, Taghipour J A R, Ensafi A A. Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application[J]. ACS Appl. Mater. Interfaces, 2019,12(1):418-427.  

    32. [32]

      Wang K B, Li Q Q, Ren Z J, Li C, Chu Y, Wang Z K, Zhang M D, Wu H, Zhang Q C. 2D metal-organic frameworks (MOFs) for high-performance batcap hybrid devices[J]. Small, 2020,16(30)2001987. doi: 10.1002/smll.202001987

    33. [33]

      Wang K B, Wang S E, Liu J D, Guo Y X, Mao F F, Wu H, Zhang Q C. Fe-based coordination polymers as battery-type electrodes in semisolid-state battery -supercapacitor hybrid devices[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15315-15323. doi: 10.1021/acsami.1c01339

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    5. [5]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    6. [6]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    7. [7]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    8. [8]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    9. [9]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    10. [10]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    16. [16]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    18. [18]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(5)
  • Abstract views(3433)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return