Citation: Sheng-Yang HAO, Yu-Ting ZHANG, Xiao-Qing WANG. Preparation and supercapacitor performance of Mo-doped NiMnSe2[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1091-1102. doi: 10.11862/CJIC.2023.072 shu

Preparation and supercapacitor performance of Mo-doped NiMnSe2

  • Corresponding author: Xiao-Qing WANG, Xiaoqingwang2012@126.com
  • Received Date: 15 November 2022
    Revised Date: 20 April 2023

Figures(9)

  • In this work, we applied a simple hydrothermal method to grow a Mo-doped NiMnSe2 without binding reagent on the foam nickel (noted as Ni0.8Mo0.2MnSe2). Small amount of Mo substitution for Ni can provide rich reactive sites and therefore greatly enhances the electrochemical performance of NiMnSe2. The specific capacity of Ni0.8Mo0.2MnSe2 at 1 A·g-1 reached 1 404.0 F·g-1. Mo substitution can also decrease the charge transfer resistance and diffusion resistance as well as improve the stability of the material structure. The Ni0.8Mo0.2MnSe2//AC (activated carbon) hybrid supercapacitor (HSC) delivered capacity of 81.6 F·g-1 and exhibited excellent rate performance. After 10 000 cycles at 2 A·g-1, the Ni0.8Mo0.2MnSe2//AC HSC maintained 95.8% of the capacity, indicating a high cycling stability. Under the power density of 376.6 W·kg-1, the Ni0.8Mo0.2MnSe2//AC HSC showed an energy density of 25.5 Wh·kg-1, higher than those of other similar supercapacitor, implying a high energy storage ability.
  • 加载中
    1. [1]

      Chen R, Yu M, Sahu R P, Puri I K, Zhitomirsky I. The development of pseudocapacitor electrodes and devices with high active mass loading[J]. Adv. Energy Mater., 2020,10(20)1903848. doi: 10.1002/aenm.201903848

    2. [2]

      Liu J L, Wang J, Xu C H, Jiang H, Li C Z, Zhang L L, Lin J Y, Shen Z X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design[J]. Adv. Sci., 2018,5(1)1700322. doi: 10.1002/advs.201700322

    3. [3]

      Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Design and mechanisms of asymmetric supercapacitors[J]. Chem. Rev., 2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252

    4. [4]

      Ghosh S, Samanta P, Murmu N C, Kuila T. Investigation of electrochemical charge storage in nickel-cobalt-selenide/reduced graphene oxide composite electrode and its hybrid supercapacitor device[J]. J. Alloy. Compd., 2020,835155432. doi: 10.1016/j.jallcom.2020.155432

    5. [5]

      Zhao X, Mao L, Cheng Q H, Li J, Liao F F, Yang G Y, Xie L, Zhao C L, Chen L Y. Two-dimensional spinel structured Co-based materials for high performance supercapacitors: A critical review[J]. Chem. Eng. J., 2020,387124081. doi: 10.1016/j.cej.2020.124081

    6. [6]

      Dan H M, Tao K Y, Hai Y, Liu L, Gong Y. (Co, Mn) -doped NiSe2-diethylenetriamine (dien) nanosheets and (Co, Mn, Sn)-doped NiSe2 nanowires for high performance supercapacitors: Compositional/morphological evolution and (Co, Mn) -induced electron transfer[J]. Nanoscale, 2019,11(36):16810-16827. doi: 10.1039/C9NR04478G

    7. [7]

      Miao C X, Xu P P, Zhao J, Zhu K, Cheng K, Ye K, Yan J, Cao D X, Wang G L, Zhang X F. Binder-free hierarchical urchin-like manganesecobalt selenide with high electrochemical energy storage performance[J]. ACS Appl. Energy Mater., 2019,2(5):3595-3604. doi: 10.1021/acsaem.9b00338

    8. [8]

      Quan L, Liu T Q, Yi M J, Chen Q D, Cai D P, Zhan H B. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance[J]. Electrochim. Acta, 2018,281:109-116. doi: 10.1016/j.electacta.2018.05.100

    9. [9]

      Miao C X, Zhou C L, Wang H E, Zhu K, Ye K, Wang Q, Yan J, Cao D X, Li N, Wang G L. Hollow Co-Mo -Se nanosheet arrays derived from metal-organic framework for high -performance supercapacitors[J]. J. Power Sources, 2021,490229532. doi: 10.1016/j.jpowsour.2021.229532

    10. [10]

      Ameri B, Mohammadi Z A, Hosseiny D S S. Metal -organic -framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors[J]. Dalton Trans., 2021,50(24):8372-8384. doi: 10.1039/D1DT01215K

    11. [11]

      Du W, Zong Q, Zhan J H, Yang H, Zhang Q L. Tailoring Mo-doped Nicop grown on (Ni, Co)Se2 nanoarrays for asymmetric supercapacitor with enhanced electrochemical performance[J]. ACS Appl. Energy Mater., 2021,4(7):6667-6677. doi: 10.1021/acsaem.1c00747

    12. [12]

      Heiba Z K, Farag N M, El-naggar A M, Abdellatief M, Aldhafiri A M, Mohamed M B. Effect of Mo-doping on the structure, magnetic and optical characteristics of nano CuCo2O4[J]. J. Mater. Res. Technol., 2021,10:832-839. doi: 10.1016/j.jmrt.2020.12.056

    13. [13]

      Li Q, Guo H, Xue R, Wang M Y, Xu M N, Yang W H, Zhang J Y, Yang W. Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device[J]. Int. J. Hydrog. Energy, 2020,45(41):20820-20831. doi: 10.1016/j.ijhydene.2020.05.143

    14. [14]

      Xiong S S, Weng S T, Tang Y, Qian L, Xu Y Q, Li X F, Lin H J, Xu Y C, Jiao Y, Chen J R. Mo-doped Co3O4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting[J]. J. Colloid Interface Sci., 2021,602:355-366. doi: 10.1016/j.jcis.2021.06.019

    15. [15]

      Li H S, Xuan H C, Guan Y Y, Zhang G H, Wang R, Liang X H, Xie Z G, Han P D, Wu Y C. Preparation and characterization of three-dimensional Mn-Mo-S composites on rGo/Ni foam for battery-supercapacitor electrode with high-performance[J]. Electrochim. Acta, 2020,345136260. doi: 10.1016/j.electacta.2020.136260

    16. [16]

      Vidhya M. S, Yuvakkumar R, Ravi G, Babu E S, Saravanakumar B, Nasif O, Alharbi S A, Velauthapillai D. Demonstration of 1.5 V asymmetric supercapacitor developed using MnSe2-CoSe2 metal composite[J]. Ceram. Interfaces, 2021,47(8):11786-11792.  

    17. [17]

      Hu X M, Liu S C, Chen Y K, Jiang J B, Cong H S, Tang J B, Sun Y X, Han S, Lin H L. Rational design of flower-like cobalt-manganese-sulfide nanosheets for high performance supercapacitor electrode materials[J]. New J. Chem., 2020,44(27):11786-11795. doi: 10.1039/D0NJ01727B

    18. [18]

      Li Y F, Wu X, Pang L J, Miao Y D, Ye A, Sui Y W, Qi J Q, Wei F X, Meng Q K, He Y Z, Zhan Z Z, Ren Y J, Sun Z. Self-supported NiSe@Ni3S2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor[J]. Ionics, 2020,26(8):3997-4007. doi: 10.1007/s11581-019-03413-7

    19. [19]

      Deka B K, Hazarika A, Lee S, Kim D Y, Park Y B, Park H W. Triboelectric-nanogenerator -integrated structural supercapacitor based on highly active P-doped branched Cu-Mn selenide nanowires for efficient energy harvesting and storage[J]. Nano Energy, 2020,73104754. doi: 10.1016/j.nanoen.2020.104754

    20. [20]

      Wu S, Hu Q Z, Wu L, Li J, Peng H, Yang Q L. One-step solvothermal synthesis of nickel selenide nanoparticles as the electrode for high-performance supercapacitors[J]. J. Alloy. Compd., 2019,784:347-353. doi: 10.1016/j.jallcom.2019.01.026

    21. [21]

      Guo D X, Zhang Y, Sun W F, Chu D W, Li B N, Tan L C, Ma H Y, Pang H J, Wang X M, Zhang L L. Facile dual -ligand modulation tactic toward nickel-cobalt sulfides/phosphides/selenides as supercapacitor electrodes with long-term durability and electrochemical activity[J]. ACS Appl. Mater. Interfaces, 2019,11(44):41580-41587. doi: 10.1021/acsami.9b11894

    22. [22]

      Lin J H, Wang H H, Yan Y T, Zheng X H, Jia H N, Qi J L, Cao J, Tu J C, Fei W D, Feng J C. Core -branched CoSe2/Ni0.85Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors[J]. J. Mater. Chem., 2018,6(39):19151-19158. doi: 10.1039/C8TA08263D

    23. [23]

      Subhadarshini S, Pavitra E, Rama R G S, Chodankar N R, Goswami D K, Han Y K, Huh Y S, Das N C. One-dimensional NiSe-Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors[J]. ACS Appl. Mater. Interfaces, 2020,12(26):29302-29315.  

    24. [24]

      Ma F, Lu J H, Pu L Y, Wang W, Dai Y T. Construction of hierarchical cobalt-molybdenum selenide hollow nanospheres architectures for high performance battery-supercapacitor hybrid devices[J]. J. Colloid Interf. Sci., 2020,563:435-446. doi: 10.1016/j.jcis.2019.12.101

    25. [25]

      Shi M M, Zhao M S, Jiao L D, Su Z, Li M, Song X P. Novel Mo -doped nickel sulfide thin sheets decorated with Ni-Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery[J]. J. Power Sources, 2021,509230333. doi: 10.1016/j.jpowsour.2021.230333

    26. [26]

      Zong Q, Zhu Y L, Wang Q Q, Yang H, Zhang Q L, Zhan J H, Du W. Prussian blue analogues anchored P-(Ni, Co)Se2 nanoarrays for high performance all-solid-state supercapacitor[J]. Chem. Eng. J., 2020,392123664. doi: 10.1016/j.cej.2019.123664

    27. [27]

      Yang X, Mao J J, Niu H, Wang Q, Zhu K, Ye K, Wang G, Cao D X, Yan J. NiS 2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors[J]. Chem. Eng. J., 2021,406126713. doi: 10.1016/j.cej.2020.126713

    28. [28]

      Gu Y P, Du W M, Darrat Y, Saleh M, Huang Y X, Zhang Z Y, Wei S H. In situ growth of novel nickel diselenide nanoarrays with high spe-cific capacity as the electrode material of flexible hybrid supercapac-itors[J]. Appl. Nanosci., 2019,10(5):1591-1601. doi: 10.1007/s13204-019-01234-8

    29. [29]

      Liu Y H, Li W L, Chang X W, Chen H, Zheng X L, Bai J B, Ren Z. MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability[J]. J. Colloid Interface Sci., 2020,562:483-492. doi: 10.1016/j.jcis.2019.11.089

    30. [30]

      Zhao L C, Zhang P, Zhang Y N, Zhang Z, Yang L, Chen Z G. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors[J]. J. Mater. Sci. Technol., 2020,54:69-76. doi: 10.1016/j.jmst.2020.02.063

    31. [31]

      Tavakoli F, Rezaei B, Taghipour J A R, Ensafi A A. Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application[J]. ACS Appl. Mater. Interfaces, 2019,12(1):418-427.  

    32. [32]

      Wang K B, Li Q Q, Ren Z J, Li C, Chu Y, Wang Z K, Zhang M D, Wu H, Zhang Q C. 2D metal-organic frameworks (MOFs) for high-performance batcap hybrid devices[J]. Small, 2020,16(30)2001987. doi: 10.1002/smll.202001987

    33. [33]

      Wang K B, Wang S E, Liu J D, Guo Y X, Mao F F, Wu H, Zhang Q C. Fe-based coordination polymers as battery-type electrodes in semisolid-state battery -supercapacitor hybrid devices[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15315-15323. doi: 10.1021/acsami.1c01339

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(2)
  • Abstract views(1031)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return