Citation: Li L, Lin LIU, Mei-Xing HAN, Hui-Jun YANG, Hui-Ying LIU. Preparation and luminescent properties of ZnAl2O4∶Mn materials[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1113-1121. doi: 10.11862/CJIC.2023.071 shu

Preparation and luminescent properties of ZnAl2O4∶Mn materials

  • Corresponding author: Li L, lvli1997@imut.edu.cn
  • Received Date: 13 October 2022
    Revised Date: 21 April 2023

Figures(7)

  • In this work, a series of ZnAl2O 4xMn samples were successfully prepared by the co - precipitation and calcination methods. The micrographs and phases of powders were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The octahedral position of [AlO6] in ZnAl2O4 with spinel structure can be effectively replaced by Mn4+. The photoluminescence excitation (PLE) spectra and photoluminescence emission (PL) spectra of ZnAl2O4xMn with varying Mn4+ doping concentrations (molar ratios of Mn to Al) were investigated. The crystal structure of host material ZnAl2O4 is conducive to effective luminescence of Mn4+ at 680 nm. The optimum doping concentration of Mn4+ was 0.06%. The relationship between luminescence intensity and concentration was analyzed by the Dexter formula to explore the mechanism of concentration quenching. The energy transfer among the nearest neighbor ions leads to concentration quenching. To further improve the luminous intensity of Mn4+, seven metal ions (Li+, Na+, K+, Ca2+, Sr2+, Sn2+, and Ga3+) were co-doped with Mn4+ into the ZnAl2O 4 crystal structure. PL spectra indicated that the co-doping effect could remarkably enhance the luminescent intensity of Mn4+. The relative prominent co-doping of Li+ and Ga3+ with Mn4+ enhanced the luminous intensity of Mn4+ by 0.6 times and doubled, respectively. Furthermore, the concentration quenching of Mn4+ is delayed.
  • 加载中
    1. [1]

      Hong Y L, Li H, Luo D, Yang H J, Zhou B Y, Zhang W B, Ding J Y, Zhou J C, Wu Q S. Mn4+-activated double perovskite red phosphor for multifunctional applications[J]. J. Lumin., 2022,244118752. doi: 10.1016/j.jlumin.2022.118752

    2. [2]

      LIU M M, GEN A F, YAN J H, LIAN H Z. Soft-chemical preparation and performance of red phosphor Cs2SiF6∶Mn4+ for white LEDs.[J]. Chinese J. Inorg. Chem., 2019,35:1593-1601. doi: 10.11862/CJIC.2019.179 

    3. [3]

      Hua Y, Wang T, Xia W, Yu J S, Li L. Constructing novel red-emitting Ba2Y0. 8Eu 0.2NbO6∶Mn4+ phosphors for multi - type luminescent thermometers and high - security anti - counterfeiting films[J]. Mater. Today Chem., 2022,23100710. doi: 10.1016/j.mtchem.2021.100710

    4. [4]

      Yu H J, Yang J Y, Liu Y G, Xie C A, Huang Z H, M ei, L F. Green HF-free synthetic route to the high - efficiency K 2 NaGaF6: Cr3+ phosphor and its NIR - LED application toward veins imaging[J]. ACS Sustainable Chem. Eng., 2022,10:8022-8030.  

    5. [5]

      Zhang H H, Yao J N, Zhou K G, Yang Y A, Fu H B. Thermally activated charge transfer in dual-emission Mn2+-alloyed perovskite quantum wells for luminescent thermometers[J]. Chem. Mater., 2022,34:1854-1861. doi: 10.1021/acs.chemmater.1c04118

    6. [6]

      Dong L P, Zhang L, Jia Y C, Shao B Q, Lü W, Zhao S, You H P. Site occupation and luminescence of novel orange-red Ca3M2Ge3O12: Mn2+, Mn4+ (M=Al, Ga) phosphors[J]. ACS Sustainable Chem. Eng., 2020,8:3357-3366.  

    7. [7]

      Dong L P, Zhang L, Jia Y C, Xu Y H, Yin S W, You H P. ZnGa2 -yAly o4: Mn2+, Mn4+ thermochromic phosphors: Valence state control and optical temperature sensing[J]. Inorg. Chem., 2020,59:15969-15976. doi: 10.1021/acs.inorgchem.0c02474

    8. [8]

      Shi L Y, Zhao D, Zhang R J, Yao Q X, Liu W. A new optical temperature sensor based on the fluorescence intensity ratio of Mn2+ and Mn4+[J]. J. Am. Ceram. Soc., 2022,105:7479-7491. doi: 10.1111/jace.18698

    9. [9]

      Lv L, Wang S, Wang X J, Han L M. Inducing luminescent properties of Mn4+ in magnesium titanate systems: An experimental and theoretical approach[J]. J. Alloy. Compd., 2018,750:543-553.  

    10. [10]

      Zhou Q, Dolgov L, Srivastava A M, Zhou L, Wang Z L, Shi J X, Dramićanin M D, Brik M G, Wu M M. Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs[J]. A Review. J. Mater. Chem. C, 2018,6:2652-2671. doi: 10.1039/C8TC00251G

    11. [11]

      Wang X S, Jiang Q, Wang Z X, Song B Q, Hou H L, Xu L, Xia L B. High performance Sr4Al14O25∶Mn4+ phosphor: Structure calculation and optical properties[J]. J. Mater. Chem. C, 2022,10:7909-7916. doi: 10.1039/D2TC00795A

    12. [12]

      Jara E, Valiente R, GonzÁLez J, Espeso J I, Khaidukov N, Rodr Guez F. Optical spectroscopy of the Sr4Al 14O 25: Mn4+, Cr3+ phosphor: Pressure and temperature dependences[J]. J. Mater. Chem. C, 2022,10:6380-6391. doi: 10.1039/D2TC00485B

    13. [13]

      Murata T, Tanoueb T, Iwasakib M, Morinaga K. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red - emitting phosphor for white LED[J]. J. Lumin., 2005,114:207-212. doi: 10.1016/j.jlumin.2005.01.003

    14. [14]

      Wang X, Li P F, Brik M G, Li X M, Li L Y, Peng M Y. Thermal quenching of Mn4+ luminescence in SrAl12O19∶Mn4+[J]. J. Lumin., 2019,206:84-90. doi: 10.1016/j.jlumin.2018.10.044

    15. [15]

      Zhang D, Wang C Z, Liu Y L, Shi Q, Wang W J, Zhai Y. Green and red photoluminescence from ZnAl2O4: Mn phosphors prepared by solgel method[J]. J. Lumin., 2012,132:1529-1531. doi: 10.1016/j.jlumin.2012.01.025

    16. [16]

      Wrzyszcz J, Zawadzki M, Trzeciak A M, Ziołkowski J J. Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: Preparation and activity[J]. J. Mol. Catal. A-Chem., 2002,189:203-210. doi: 10.1016/S1381-1169(02)00073-0

    17. [17]

      Li X, Zhu Z, Zhao Q, Wang L. Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study[J]. J. Hazard. Mater., 2011,189:2089-2096.  

    18. [18]

      Khaidukov N M, Brekhovskikh M N, Kirikov N Y, Kondratyuk V A, Makhov V N. Luminescence of MgAl2O4 and ZnAl2O4 spinel ceramics containing some 3d ions[J]. Ceram. Int., 2020,46:21351-21359. doi: 10.1016/j.ceramint.2020.05.231

    19. [19]

      Trung D Q, Tu N, Quang N V, Tran M T, Du N V, Huy P T. Non-rare- earth dual green and red-emitting Mn-doped ZnAl2O 4 phosphors for potential application in plan - growth LEDs[J]. J. Alloy. Compd., 2020,845156326. doi: 10.1016/j.jallcom.2020.156326

    20. [20]

      Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z B, Wang Y S. Non - rare - earth BaMgAl10-2xO17: xMn4+, xMg2+ : A narrow - band red phosphor for use as a high-power warm W-LED[J]. Chem. Mater., 2016,28:3515-3524. doi: 10.1021/acs.chemmater.6b01303

    21. [21]

      Chen Y B, Chen J Q, Liang J H, He J. Localized charge accumulation driven by Li+ incorporation for efficient LED phosphors with tun- able photoluminescence[J]. Chem. Mater., 2020,32:9551-9570. doi: 10.1021/acs.chemmater.0c02547

    22. [22]

      Kong L, Liu Y Y, Dong L P, Zhang L. Enhanced red luminescence in CaAl12O19: Mn4+ via doping Ga3+ for plant growth lighting[J]. Dalton Trans., 2020,49:1947-1954. doi: 10.1039/C9DT04086B

    23. [23]

      Jia H, Duan Y N, Gao J S, Yuan X L. Enhanced red emission for BaSiF6: Mn4+ hexagonal nanorod phosphor via using spherical silica[J]. Mater. Lett., 2018,223:163-165. doi: 10.1016/j.matlet.2018.03.152

    24. [24]

      Dwibedi D, Murugesan C, Leskes M, Barpanda P. Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O 4) spinel[J]. Mater. Res. Bull., 2018,98:219-247. doi: 10.1016/j.materresbull.2017.10.010

    25. [25]

      Jain M, Manju , Kumar R, Won S O. Defect states and kinetic param- eter analysis of ZnAl2O4 nanocrystals by X - ray photoelectron spectroscopy and thermoluminescence[J]. Sci. Rep., 2020,10:385-399. doi: 10.1038/s41598-019-57227-8

    26. [26]

      Staszak W, Zawadzki M, Okal J. Solvothermal synthesis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion[J]. J. Alloy. Compd., 2010,492:500-507. doi: 10.1016/j.jallcom.2009.11.151

    27. [27]

      Preudhomme J, Tarte P. Infrared studies of spinels—Ⅲ : The normal Ⅱ-Ⅲ spinels[J]. Spectrochimica Acta Part A—Molecular Spectroscopy, 1971,27A:1817-1835.  

    28. [28]

      Rojas-Hernandez R E, Rubio- Marcos, Romet I, Del Campo A, Gorni G, Hussainova I, Fernandez J F, Nagirnyi V. Deep-ultraviolet emitter: Rare - earth - free ZnAl2O4 nanofibers via a simple wet chemical route[J]. Inorg. Chem., 2022,61:11886-11896. doi: 10.1021/acs.inorgchem.2c01646

    29. [29]

      Mcmillan P, Piriou B. The structures and vibrational spectra of crystals and glasses in the silica - alumina system[J]. J. Non - Cryst. Solids, 1982,53:279-298. doi: 10.1016/0022-3093(82)90086-2

    30. [30]

      Zhang D, Du C Y, Chen J X, Shi Q, Wang Q R, Li S H, Wang W J, Yan X L, Fan Q L. Improvement of structural and optical properties of ZnAl2O4: Cr3+ ceramics with surface modification by using various concentrations of zinc acetate[J]. J. Sol-Gel Sci. Technol., 2018,88:422-429. doi: 10.1007/s10971-018-4820-x

    31. [31]

      Druska P, Steinike U, Sepelak V. Surface structure of mechanically activated and of mechanosynthesized zinc ferrite[J]. J. Solid State Chem., 1999,146:13-21. doi: 10.1006/jssc.1998.8284

    32. [32]

      Duan X L, Yuan D R, Yu F P. Cation distribution in co - doped ZnAl2O4 nanoparticles studied by X - ray photoelectron spectroscopy and 27Al solid-state NMR spectroscopy[J]. Inorg. Chem., 2011,50:5460-5467. doi: 10.1021/ic200433r

    33. [33]

      Menon S G, Choudhari K S, Shivashankar S A, Chidangil S. Microwave solution route to ceramic ZnAl2O 4 nanoparticles in 10 minutes: Inversion and photophysical changes with thermal history[J]. New J. Chem., 2017,41:5420-5428. doi: 10.1039/C7NJ01006K

    34. [34]

      Bergstein A, White W B. Manganese - activated luminescence in SrAl12O 19 and CaAl 12O19[J]. J. Electrochem. Soc., 1971,118:1166-1172. doi: 10.1149/1.2408274

    35. [35]

      Chen Y B, Yang C H, Deng M P, He J, Xu Y Q, Liu Z Q. A highly luminescent Mn4+ activated LaAlO3 far - red - emitting phosphor for plant growth LEDs: Charge compensation induced Mn4+ incorporation[J]. Dalton Trans, 2019,48:6738-6745. doi: 10.1039/C9DT00762H

    36. [36]

      Ozawa L. Determination of self - concentration quenching mecha- nisms of rare earth luminescence from intensity measurements on powdered phosphor screens[J]. J. Electrochem. Soc., 1979,126:106-109.  

    37. [37]

      Golyeva E V, Vaishlia E I, Kurochkin M A, Kolesnikov E Y, Lhderant E, Semencha A V, Kolesnikov I E. Nd3+ concentration effect on luminescent properties of MgAl2O4 nanopowders synthesized by modified Pechini method[J]. J. Solid State Chem, 2020,289121486. doi: 10.1016/j.jssc.2020.121486

    38. [38]

      Feng N N, Tiana Y, Wang L, Cui C E. Shi Q F, Huang P B. Band structure, energy transfer and temperature - dependent luminescence of novel blue emitting KBaYSi2O7: Eu2+ phosphor[J]. J. Alloy. Compd., 2016,654:133-139. doi: 10.1016/j.jallcom.2015.09.083

    39. [39]

      Zhang S A, Hu Y H, Duan H, Chen L. Novel La3GaGe5O16: Mn4+ based deep red phosphor: A potential color converter for warm white light[J]. RSC Adv., 2015,5:90499-90507. doi: 10.1039/C5RA18163A

    40. [40]

      Cao Z Y, Dong S J, Shi S K, Wang J Y, Fu L S. Solid state reaction preparation of an efficient rare-earth free deep-red Ca2YNbO6: Mn4+ phosphor[J]. J. Solid State Chem., 2022,307122840. doi: 10.1016/j.jssc.2021.122840

    41. [41]

      Chen T J, Yang X L, Xia W B, Li W. Deep-red emission of Mn4+ and Cr3+ in (Li 1-xAx) 2 MgTiO4 (A=Na and K) phosphor: Potential application as W - LED and compact spectrometer[J]. Ceram. Int., 2017,43:6949-6954. doi: 10.1016/j.ceramint.2017.02.118

    42. [42]

      Mikenda W, Preisinger A. N - lines in the luminescence spectra of Cr3+-doped spinels identification of N-lines[J]. J. Lumin., 1981,26:53-66.

    43. [43]

      Jin Y H, Hu Y H, Wu H Y, Duan H, Chen L, Fu Y R, Ju G F, Mu Z F, He M. A deep red phosphor Li 2MgTiO4: Mn4+ exhibiting abnormal emission: Potential application as color converter for warm W-LEDs[J]. Chem. Eng. J., 2016,288:596-607. doi: 10.1016/j.cej.2015.12.027

    44. [44]

      Trejgis K, Dramićanin M D, Marciniak L. Highly sensitive multiparametric luminescent thermometer for biologically - relevant temperatures based on Mn4+, Ln3+ co - doped SrTiO3 nanocrystals[J]. J. Alloy. Compd., 2021,875159973. doi: 10.1016/j.jallcom.2021.159973

    45. [45]

      Lü W, Lv W Z, Zhao Q, Jiao M M, Shao B Q, You H P. A novel effi - cient Mn4+ activated Ca14Al10Zn6O35 phosphor: Application in red - emitting and white LEDs[J]. Inorg. Chem., 2014,53:11985-11990. doi: 10.1021/ic501641q

    46. [46]

      Han M X, Tang H, Liu L, Wang Y Y, Zhang X F, Lv L. Tuning the Mn4+ coordination environment in Mg2TiO4 through a codoping strategy for enhancing luminescence performance[J]. J. Phys. Chem. C, 2021,125:15687-15695. doi: 10.1021/acs.jpcc.1c04293

    47. [47]

      Li G, Lu X, Mao Q, Du G, Liu M, Chu L, Zhong J. Suppression of charge imbalance via Li+ -Mn4+ co-incorporated Sr2YSbO6 red phosphors for warm W-LEDs, Mater[J]. Today Chem., 2022,23100744.  

    48. [48]

      Hu J X, Huang T H, Zhang Y P, Lu B. Enhanced deep-red emission from Mn4+/Mg2+ codoped CaGdAlO4 phosphors for plant cultivation[J]. Dalton Trans., 2019,48:2455-2466. doi: 10.1039/C8DT04955F

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(3)
  • Abstract views(1053)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return