Citation: Xuan WANG, Ji-Jiang WANG, Long TANG, Lao-Bang WANG, Er-Lin YUE, Chao BAI, Xiao WANG, Yu-Qi ZHANG. A stable Zinc(Ⅱ)metal-organic framework in water for the detection of tetracycline[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1151-1158. doi: 10.11862/CJIC.2023.069 shu

A stable Zinc(Ⅱ)metal-organic framework in water for the detection of tetracycline

Figures(9)

  • A Zinc(Ⅱ) metal-organic framework (Zn-MOF), namely [Zn(H2L)(4, 4′-bpy)]n (1), where H4L=1, 1′-ethylbi- phenyl-3, 3′, 5, 5′-tetracarboxylic acid, 4, 4′-bpy=4, 4′-bipyridine, was successfully synthesized under solvothermal conditions. The structure was characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravi- metric analysis. The single crystal structure analysis shows that 1 belongs to the monoclinic C2/c space group and H 2L2- ligands adopt monodentate coordination mode, connecting with Zn(Ⅱ)to form 1D chains. Finally, the 1D chains are connected by 4, 4′-bpy to form a 2D wavelike network. 1 shows good stability in water, and can be used as a highly sensitive and selective fluorescent probe to detect tetracycline (TET) with a detection limit of 0.17 μmol· L-1. 1 can be successfully used for the determination of tetracycline in Yanhe River water. In addition, the possible fluorescence quenching mechanisms of 1 were also studied. CCDC: 2212375, 1.
  • 加载中
    1. [1]

      Bai Y H, Su J F, Wen Q, Li G Q, Xue L, Huang T L. . Removal of tetracycline by denitrifying Mn - oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): Efficiency and mechanisms[J]. Bioresour. Technol, 2020,312123565. doi: 10.1016/j.biortech.2020.123565

    2. [2]

      Yaghi O M, O′Keeffe M, Ockwig N W, Ch ae, H K, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials[J]. Nature, 2003,423:705-714. doi: 10.1038/nature01650

    3. [3]

      Butova V V, Soldatov M A, Guda A A, Lomachenko K A, Lamberti C. Metal-organic frameworks: Structure, properties, methods of synthesis and characterization[J]. Russ. Chem. Rev, 2016,85:280-307. doi: 10.1070/RCR4554

    4. [4]

      Liang Q N, Chen J M, Wang F L, Li Y W. Transition metal - based metal-organic frameworks for oxygen evolution reaction[J]. Coord. Chem. Rev, 2020,424213488. doi: 10.1016/j.ccr.2020.213488

    5. [5]

      Sakamoto N, Nishimura Y F, Nonaka T, Ohashi M, Ishida N, Kitazumi K, Kato Y, Sekizawa K, Morikawa T, Arai T. Self-assembled cuprous coordination polymer as a catalyst for CO2 electrochemical reduction into C2 products[J]. ACS Catal, 2020,10(18):10412-10419. doi: 10.1021/acscatal.0c01593

    6. [6]

      Woldu A R, Huang Z L, Zhao P X, Hu L S, Astruc D. Electrochemical CO2 reduction (CO2RR) to multi- carbon products over copper - based catalysts[J]. Chem. Rev, 2022,454214340.  

    7. [7]

      Zhou Y T, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh R R, Rani E, Singh H, Kirillov A M. Bimetallic metal-organic frameworks and MOF-derived composites: Recent progress on electro and photoelectrocatalytic applications[J]. Coord. Chem. Rev, 2022,451214264. doi: 10.1016/j.ccr.2021.214264

    8. [8]

      Lin J B, Zhang J P, Chen X M. Nonclassical active site for enhanced gas sorption in porous coordination polymer[J]. J. Am. Chem. Soc, 2010,132:6654-6656. doi: 10.1021/ja1009635

    9. [9]

      Duan J G, Jin W Q, Kitagawa S. Water-resistant porous coordination polymers for gas separation[J]. Coord. Chem. Rev, 2017,332:48-74. doi: 10.1016/j.ccr.2016.11.004

    10. [10]

      Duan J G, Higuchi M, Krishna R, Kiyonaga T, Tsutsumi Y, Sato Y, Kubota Y, Takata M, Kitagawa S. High CO2/N2/O2 /CO separation in a chemically robust porous coordination polymer with low binding energy[J]. Chem. Sci, 2014,5(2):660-666. doi: 10.1039/C3SC52177J

    11. [11]

      Imaz I, Rubio-Martinez M, Garcia-Fernandez L, Garcia F, Ruiz-Moli-na D, Hernando J, Puntes V, Maspoch D. Coordination polymer particles as potential drug delivery systems[J]. Chem. Commun, 2010,46:4737-4739. doi: 10.1039/c003084h

    12. [12]

      Dutta B, Hazra A, Dey A, Sinha C, Ray P P, Banerjee P, Mir M H. Construction of a succinate - bridged Cd - based two - dimensional coordination polymer for efficient optoelectronic device fabrication and explosive sensing application[J]. Cryst. Growth Des, 2020,20(2):765-776. doi: 10.1021/acs.cgd.9b01181

    13. [13]

      Wen T, Zhang D X, Liu J, Lin R, Zhang J. A multifunctional helical Cu coordination polymer with mechanochromic, sensing and photocatalytic properties[J]. Chem. Commun, 2013,49:5660-5662. doi: 10.1039/c3cc42241k

    14. [14]

      Luo X Z, Abazari R, Tahir M, Fan W K, Kumar A, Kalhorizadeh T, Kirillov A M, Amani- Ghadim A R, Chen J, Zhou Y T. Trimetallic metal - organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion[J]. Coord. Chem. Rev, 2022,461214505. doi: 10.1016/j.ccr.2022.214505

    15. [15]

      Horike S, Umeyama D, Kitagawa S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks[J]. Acc.Chem. Re, 2013,46(11):2376-2384. doi: 10.1021/ar300291s

    16. [16]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6 - trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem, 2022,38(4):735-744.  

    17. [17]

      ZHANG L W, LIU S Q, ZHANG P P, NI A Y, ZHANG J J. Synthe- sis, crystal structure, and detection of acidic amino acids of a Cd metal-organic framework based on 5-((naphthalen-1-ylmethyl) ami- no) isophthalic acid[J]. Chinese J. Inorg. Chem, 2022,38(9):1871-1877.  

    18. [18]

      XU H, PAN Z R, QI Z P, SUN J. Three luminescent Zn-MOFs based on V-shaped ligands for fluorescence sensing of 2, 4, 6-trinitrophenol and Fe3+ in aqueous solution[J]. Chinese J. Inorg. Chem, 2022,38(12):2479-2490.  

    19. [19]

      Wang S Q, Wang L, Zhu Y M, Song Y H. Fluorescent detection of S2- based on ZnMOF-74 and CuMOF-74. Spectroc[J]. Acta Pt. A-Molec. Biomolec. Spectr, 2020,236118327. doi: 10.1016/j.saa.2020.118327

    20. [20]

      Farahani Y D, Safarifard V. Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn- MOF with azine- decorated pores[J]. J.Solid State Chem, 2019,275:131-140. doi: 10.1016/j.jssc.2019.04.018

    21. [21]

      Chandrasekhar P, Mukhopadhyay A, Savitha G, Moorthy J N. Remarkably selective and enantiodifferentiating sensing of histidine by a fluorescent homochiral Zn - MOF based on pyrene- tetralactic acid[J]. Chem Sc, 2016,7:3085-3091. doi: 10.1039/C5SC03839A

    22. [22]

      Gogia A, Mandal S K. A rational design and green synthesis of 3D metal organic frameworks containing a rigid heterocyclic nitrogen - rich dicarboxylate: Structural diversity, CO2 sorption and selective sensing of 2, 4, 6-TNP in water[J]. Dalton Trans, 2019,48:2388-2398. doi: 10.1039/C8DT04474K

    23. [23]

      Liu T Y, Qu X L, Zhang Y, Yan B. A stable Cd -based metal-organic framework: Synthesis, structure, and its Eu3+ functionalization for ratiometric sensing on the biomarker 2-(2 - methoxyethoxy) acetic acid[J]. Inorg. Chem, 2021,60(12):8613-8620. doi: 10.1021/acs.inorgchem.1c00589

    24. [24]

      Wang L B, Wang J J, Yue Er L, Li J F, Tang L, Bai Ch, Wang X, Hou X Y, Zhang Y Q. Information encryption, highly sensitive detection of nitrobenzene, tetracycline based on a stable luminescent Cd - MOF. Spectroc[J]. Acta Pt. A - Molec. Biomolec. Spect, 2022,269120752. doi: 10.1016/j.saa.2021.120752

    25. [25]

      Dang S, Ma E, Sun Z M, Zhang H J. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cationexchange approach[J]. J. Mater. Chem., 2012,22:16920-16926. doi: 10.1039/c2jm32661b

    26. [26]

      Chen Z, Sun Y W, Zhang L L, Sun D, Liu F L, Meng Q G, Wang R M, Sun D F. . A tubular europium-organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions[J]. Chem.Commu, 2013,49:11557-11559. doi: 10.1039/c3cc46613b

    27. [27]

      Zhao X L, Tian D, Gao Q, Sun H W, Xu J, Bu X H. A chiral lantha- nide metal - organic framework for selective sensing of Fe ions[J]. Dalton Tran, 2016,45:1040-1046. doi: 10.1039/C5DT03283K

    28. [28]

      Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S, Ghosh S K. Highly selective detection of nitro explosives by a luminescent metalorganic framework[J]. Angew. Chem. Int. Ed, 2013,52(10):2881-2885. doi: 10.1002/anie.201208885

    29. [29]

      Pramanik S, Zheng C, Zhang X, Emge T J, Li J. New microporous metal- organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds[J]. J. Am. Chem. Soc, 2011,133(12):4153-4155. doi: 10.1021/ja106851d

    30. [30]

      Liu Z P, He W J, Guo Z J. Metal coordination in photoluminescent sensing[J]. Chem. Soc. Rev, 2013,42:1568-1600. doi: 10.1039/c2cs35363f

    31. [31]

      He T S, Lan Y L, Li Z Y, Zhu L N, Li X Z. Chiral coordination polymers from a new 2 - deoxy - D - ribose derivative linker: Syntheses, structures, and Fe3+ fluorescent probe functions[J]. Cryst. Growth Des, 2021,21(4):2233-2242. doi: 10.1021/acs.cgd.0c01661

    32. [32]

      Huang Y, Qin Y, Ge Y, Cui Y F, Zhang X M, Li Y H, Yao J L. Ratio- nally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42- and Cr2O72-[J]. New J. Chem, 2019,43:19344-19354. doi: 10.1039/C9NJ04893F

    33. [33]

      Smith J A, Singh-Wilmot M A, Carter K P, Cahill C L, Ridenour J A. Lanthanide-2, 3, 5, 6- tetrabromoterephthalic acid metal-organic frame- works: Evolution of halogen…halogen interactions across the lantha- nide series and their potential as selective bifunctional sensors for the detection of Fe3+, Cu2+, and nitroaromatics[J]. Cryst. Growth Des, 2019,19(1):305-319. doi: 10.1021/acs.cgd.8b01426

    34. [34]

      Chen S, Yu Y L, Wang J H. Inner filter effect-based fluorescent sens- ing systems: A review[J]. Anal. Chim. Act, 2018,999:13-26. doi: 10.1016/j.aca.2017.10.026

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    11. [11]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    12. [12]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    19. [19]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(1)
  • Abstract views(996)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return