Citation: Zhen WANG, Li LI, Jun-Ting ZHANG, Xiao-Long DENG, Yong-Feng LIU. High temperature performances of lithium-rich manganese ternary cathode material modified by aluminum based compounds[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1053-1060. doi: 10.11862/CJIC.2023.066 shu

High temperature performances of lithium-rich manganese ternary cathode material modified by aluminum based compounds

  • Corresponding author: Zhen WANG, hagongdawangzhen@163.com
  • Received Date: 24 December 2022
    Revised Date: 17 April 2023

Figures(5)

  • To solve the problem of the electrochemical performance of lithium-rich manganese ternary cathode material (Li1.2Ni0.133Co0.133Mn0.533O2, LR) with poor cyclic stability at high temperatures, the materials modified with Al2O3, AlF3, and AlPO4 were prepared by simple multi-phase recombination. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) were used to study the composition structure, electrochemical properties, and mechanism of the composite materials at high temperatures. The results showed that the Li1.2Ni0.133Co0.133Mn0.533O2 modified with Al2O3 (LRO) had the best properties and the coating layer was thin and uniform. At 50℃, the average discharge capacity of LRO was 189.5 mAh·g-1 for 200 cycles, and the capacity retention rate was 81.5%, which was 61.5 mAh·g-1 and 49.8% higher than that of raw materials, respectively. The charge transfer resistance of LRO after 100 cycles was 443.1 Ω, only half of the raw materials, showing excellent electrochemical performance.
  • 加载中
    1. [1]

      Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chem. Rev., 2018,118(23):11433-11456. doi: 10.1021/acs.chemrev.8b00422

    2. [2]

      WANG Z X, MA J, GAO Y R, LIU S, FENG X, CHEN L Q. Stabilizing structure and performances of lithium rich layer-structured oxide cathode materials[J]. Prog. Chem., 2019,31(11):1591-1614.  

    3. [3]

      Wu F, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy Environ. Sci., 2017,10(2):435-459. doi: 10.1039/C6EE02326F

    4. [4]

      Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nat. Energy, 2018,3(4):267-278. doi: 10.1038/s41560-018-0107-2

    5. [5]

      Xia Y, Zheng J M, Wang C M, Gu M. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018,49:434-452. doi: 10.1016/j.nanoen.2018.04.062

    6. [6]

      Zhang X, Ju Z Y, Zhu Y, Takeuchi K J, Takeuchi E S, Marschilok A C, Yu G H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes[J]. Adv. Energy Mater., 2021,11(2)2000808. doi: 10.1002/aenm.202000808

    7. [7]

      Nitta N, Wu F X, Lee J T, Yushin G. Li-ion battery materials: Present and future[J]. Mater. Today, 2015,18(5):252-264. doi: 10.1016/j.mattod.2014.10.040

    8. [8]

      MA C, LV Y C, LI H. Fundamental scientific aspects of lithium batteries(Ⅶ)—Positive electrode materials[J]. Energy Storage Science and Technology, 2014,3(1):53-65. doi: 10.3969/j.issn.2095-4239.2014.01.008

    9. [9]

      Rossouw M H, Thackeray M M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications[J]. Mater. Res. Bull., 1991,26(6):463-473. doi: 10.1016/0025-5408(91)90186-P

    10. [10]

      Johnson C S, Korte S D, Vaughey J T, Thackeray M M, Bofinger T E, Shao-Horn Y, Hackney S A. Structural and electrochemical analysis of layered compounds from Li2MnO3[J]. J. Power Sources, 1999,81:491-495.  

    11. [11]

      Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J. Mater. Chem., 2007,17(30):3112-3125. doi: 10.1039/b702425h

    12. [12]

      YIN Z W, SUN S G. Origin of structure and voltage fade of high-capacity Li-rich Mn-rich cathode for Li-ion batteries and its solution[J]. Prog. Chem., 2022,34(6):1249-1251.  

    13. [13]

      YANG J G, LI Y J, LU D, CHEN Y F, SUN W W, ZHENG C M. Morphology control and lithium storage performance of micro/nano Li-rich cathode material[J]. Chem. J. Chinese University, 2019,40(7):1495-1500.  

    14. [14]

      WANG J Y. Multi-scale structure of high-capacity electrode materials for lithium-ion batteries. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2022: 23-40

    15. [15]

      McCalla E, Abakumov A M, Saubanère M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novák P, Tendeloo G V, Dominko R, Tarascon J M. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015,350(6267):1516-1521. doi: 10.1126/science.aac8260

    16. [16]

      LI Z, WANG Z, BAN L Q, WANG J T, LU S G. Recent advances on surface modification of Li- and Mn-rich cathode materials[J]. Acta Chim. Sin., 2019,77(11):1115-1128.  

    17. [17]

      Li J, Camardese J, Shunmugasundaram R, Glazier S, Lu Z H, Dahn J R. Synthesis and characterization of the lithium-rich core-shell cathodes with low irreversible capacity and mitigated voltage fade[J]. Chem. Mater., 2015,27(9):3366-3377. doi: 10.1021/acs.chemmater.5b00617

    18. [18]

      Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Adv. Energy Mater., 2016,6(6)1501914. doi: 10.1002/aenm.201501914

    19. [19]

      Hu X, Guo H J, Peng W J, Wang Z X, Li X H, Hu Q Y. Effects of Nb doping on the performance of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries[J]. J. Electroanal. Chem., 2018,822:57-65. doi: 10.1016/j.jelechem.2018.05.015

    20. [20]

      Gao M X, Yan C H, Shao Q N, Chen J, Zhang C Y, Chen G R, Jiang Y Z, Zhu T J, Sun W P, Liu Y F, Gao M X, Pan H G. A novel perovskite electron-ion conductive coating to simultaneously enhance cycling stability and rate capability of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries[J]. Small, 2021,17(19)2008132.  

    21. [21]

      Shu W, Jian Z L, Zhou J, Zheng Y, Chen W. Boosting the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by rough coating with the superionic conductor Li7La3Zr2O12[J]. ACS Appl. Mater., 2021,13(46):54916-54923.  

    22. [22]

      Dong S D, Zhou Y, Hai C X, Zeng J B, Sun Y X, Ma Y F, Shen Y, Li X, Ren X F, Sun C, Zhang G T, Wu Z W. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li1.2Ni0.13Co0.13Mn0.54O2[J]. ACS Appl. Mater., 2020,12(34):38153-38162.  

    23. [23]

      CHEN L D, ZOU W, WU L, XIA F J, HU Z Y, LI Y, SU B L. Nano-Al2O3 coated Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 for highly improved lithium-ion batteries[J]. Chem. J. Chinese University, 2020,41(6):1329-1336.  

    24. [24]

      Su Y F, Yuan F Y, Chen L, Lu Y, Dong J Y, Fang Y Y, Chen S, Wu F. Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating[J]. J. Energy Chem., 2020,51:39-47.  

    25. [25]

      Li Q, Li G S, Fu C C, Luo D, Fan J M, Zheng J, Xie D J, Li L P. A study on storage characteristics of pristine Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2: Effect of storage temperature and duration[J]. Electrochim. Acta, 2015,154:249-258.  

    26. [26]

      Panda A, Patra J, Hsieh C T, Huange Y C, Gandomi Y A, Fu C C, Lin M H, Juang R S, Chang J K. Improving high-temperature performance of lithium-rich cathode by roll-to-roll atomic layer deposition of titania nanocoating for lithium-ion batteries[J]. J. Energy Storage, 2021,44103348.  

    27. [27]

      Shimoda K, Minato T, Nakanishi K, Komatsu H, Matsunaga T, Tanida H, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z. Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy[J]. J. Mater. Chem. A, 2016,4(16):5909-5916.  

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1)
  • Abstract views(859)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return