Citation: Zhong YU, Yu-Xue WANG, Jia-Cai HAN, Jing HAN. A closed-ring dithienylethene and its Ag(Ⅰ) complex: Syntheses, structures, and reversible photochromism[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 947-958. doi: 10.11862/CJIC.2023.065 shu

A closed-ring dithienylethene and its Ag(Ⅰ) complex: Syntheses, structures, and reversible photochromism

  • Corresponding author: Jing HAN, hanj@xaut.edu.cn
  • Received Date: 21 November 2022
    Revised Date: 14 March 2023

Figures(10)

  • A new cyano-equipped dithienylethene in closed-ring form (Lc) was first isolated and structurally characterized by IR, 1H NMR, and X-ray single-crystal diffraction. It showed an interesting racemic mixture of R,R and S,S enantiomer pairs evidencing the structural transformation from 1,3,5-hexatriene to cyclohexadiene in the photochemical conrotatory cyclization. Followed UV-Vis spectral investigations exhibited its reversible photochromism in both THF solution and solid state with the maximum absorption wavelength of 607 nm observed in the visible band. The photo-isomerization kinetics of the compound indicated a first-order process for photo-reversion and zeroth-order for photo-cyclization. The compound was further used as a ligand to self-assemble with Ag(CF3SO3) resulting in complex 1. Its structure was characterized by elemental analysis, IR, 1H NMR, and ESI-MS. Complex 1 demonstrated reversible photochromism in the solid state with the same λmax as the closed-ring ligand. Unlike the complex derived from the open-ring ligand, Ag(Ⅰ) ions coordination with the closed-ring ligand doesn′t modify the absorption due to the restricted free rotation of the thienyl rings in the rigid configuration of the closed-ring ligand. In comparison with the open-ring ligand, 1 displayed a faster photo-isomerization rate corresponding to the smaller band gap determined by cyclic voltammetry.
  • 加载中
    1. [1]

      Irie M, Mohri M. Thermally irreversible photochromic systems—Reversible photocyclization of diarylethene derivatives[J]. J. Org. Chem., 1988,53(4):803-808. doi: 10.1021/jo00239a022

    2. [2]

      Gilat S L, Kawasi S H, Lehn J M. Light-triggered molecular devices: Photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species[J]. Chem. Eur. J., 1995,1(5):275-284. doi: 10.1002/chem.19950010504

    3. [3]

      Kawasi S H, Gilat S. L, Ponsine R. A dual-mode molecular switching device: Bisphenolic diarylethenes with integrated photochromic and electrochromic properties[J]. Chem. Eur. J., 1995,1(5):285-293. doi: 10.1002/chem.19950010505

    4. [4]

      Yamada T, Kobatake S, Muto K, Irie M. X-ray crystallographic study on single-crystalline photochromism of bis(2,5-dimethyl-3-thienyl)-perfluorocyclopentene[J]. J. Am. Chem. Soc., 2000,122(8):1589-1592. doi: 10.1021/ja993289x

    5. [5]

      Higashiguchi K, Matsuda K, Irie M. Photochromic reaction of a fused dithienylethene: multicolor photochromism[J]. Angew. Chem. Int. Ed., 2003,42(30):3537-3540. doi: 10.1002/anie.200351751

    6. [6]

      Kobatake S, Uchida K, Tsuchida E, Irie M. Single-crystalline photochromism of diarylethenes: Reactivity-structure relationship[J]. Chem. Commun., 2002(23):2804-2805. doi: 10.1039/B208419H

    7. [7]

      Irie M, FukaminatoT , Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators[J]. Chem. Rev., 2014,114(24):12174-12277. doi: 10.1021/cr500249p

    8. [8]

      Ichikawa T, Morimoto M, Sotome H, Ito S, Miyasaka H, Irie M. Photochromism of diarylethene derivatives having benzophosphole and benzothiophene groups[J]. Dyes Pigment., 2016,126:186-193. doi: 10.1016/j.dyepig.2015.11.023

    9. [9]

      Irie M. Diarylethenes for memories and switches[J]. Chem. Rev., 2000,100(5):1685-1716. doi: 10.1021/cr980069d

    10. [10]

      Zhang J J, Tian H. The endeavor of diarylethenes: New structures, high performance, and bright future[J]. Adv. Opt. Mater., 2018,6(6)1701278. doi: 10.1002/adom.201701278

    11. [11]

      Milek M, Heinemann F W, Khusniyarov M M. Spin crossover meets diarylethenes: Efficient photoswitching of magnetic properties in solution at room temperature[J]. Inorg. Chem., 2013,52(19):11585-11592. doi: 10.1021/ic401960x

    12. [12]

      Vagin S I, Ott A K, Hoffmann S D, Lanzinger D, Rieger B. Synthesis and properties of (triptycenedicarboxylatio) zinc coordination networks[J]. Chem.-Eur. J., 2013,15(23):5845-5853.

    13. [13]

      ZHENG C M, WANG T T, ZENG H P. Synthesis and photochromic properties of diarylethene-based porphyrin derivative and its metal complexes[J]. Chin. J. Org. Chem., 2012,32(4):719-726.  

    14. [14]

      Munakata M, Han J, Nabei A, Kuroda-Sowa T, Maekawa M, Suenaga Y, Gunjima N. Syntheses, structures and photochromism of two novel copper(Ⅱ) complexes with 1,2-bis(2'-methyl-5'-(2″-pyridyl)-3'-thienyl) perfluorocyclopentene[J]. Polyhedron, 2006,25(18):3519-3525. doi: 10.1016/j.poly.2006.06.045

    15. [15]

      Munakata M, Han J, Nabei A, Kuroda-Sowa T, Maekawa M, Suenaga Y, Gunjima N. Reversible photochromism of novel silver(Ⅰ) coordination complexes with 1,2-bis(2'-methyl-5'-(2″-pyridyl)-3'-thienyl) perfluorocyclopentene in crystalline phase[J]. Inorg. Chim. Acta, 2006,359(13):4281-4288. doi: 10.1016/j.ica.2006.06.010

    16. [16]

      Han J, Maekawa M, Suenaga Y, Ebisu H, Nabei A, Kuroda-Sowa T, Munakata M. Photochromism of novel metal coordination polymers with 1,2-bis(2'-methyl-5'-(carboxylic acid)-3'-thienyl)perfluorocyclopentene in crystalline phase[J]. Inorg. Chem., 2007,46(8):3313-3321. doi: 10.1021/ic0615168

    17. [17]

      Han J, Chen H, Yu Z, Guo P. Photochromic 1,2-bis(2'-methyl-5'-(carboxylic acid)-3'-thienyl) perfluorocyclopentene and its Co(Ⅱ) coordination polymer[J]. Inorg. Chim. Acta, 2017,462:1-9. doi: 10.1016/j.ica.2017.03.005

    18. [18]

      Munakata M, Han J, Maekawa M, Suenaga Y, Kuroda-Sowa T, Nabei A, Ebisu H. A MLCT-switched copper(Ⅱ) coordination polymer with 1,2-bis(2'-methyl-5'-(4″-pyridyl)-3'-thienyl)perfluorocyclopentene in crystalline phase[J]. Inorg. Chim. Acta, 2007,360(8):2792-2796. doi: 10.1016/j.ica.2006.12.026

    19. [19]

      Han J, Konaka H, Kuroda-Sowa T, Maekawa M, Suenaga Y, Isihara H, Munakata M. Syntheses and structures of photochromic molybdenum(Ⅱ) and rhodium(Ⅱ) complexes with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl) ethene[J]. Inorg. Chim. Acta, 2006,359(1):99-108. doi: 10.1016/j.ica.2005.08.023

    20. [20]

      Han J, Li S, Yu Z, Chen H, Zang Y, Wang Q J. A photochromic AgBF4 complex with cis-1,2-dicyano-1,2-bis(2', 4', 5'-trimethyl-3'-thienyl)ethene: Synthesis, structure and photochromism[J]. Inorg. Chim. Acta, 2017,464:11-17. doi: 10.1016/j.ica.2017.04.039

    21. [21]

      Liu G, Tu Q D, Zhang Q, Fan C B, Yang T S. 1,2-Bis[5-(4-cyanophenyl)-2-methyl-3-thienyl]-3,3,4,4,5,5-hexafluorocyclopentene: A photochromic diarylethene compound[J]. Acta Crystallogr. Sect. E, 2008,E64:O938-U2809.

    22. [22]

      Han J, Li Q, Yu Z, Quan C Y, Liu X, Han J C. Light-driven coordination anions-directed regulation of chromism in three metal complexes assembled by cyano-equipped dithienylethene ligand[J]. Inorg. Chim. Acta, 2020,509119666. doi: 10.1016/j.ica.2020.119666

    23. [23]

      Cromer D T, Waer J T, International tables for X-ray crystallography: Vol. Ⅳ. Birmingham: The Kynoch Press, 1974.

    24. [24]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    25. [25]

      Yamaguchi T, Nomiyama K, Isayama M, Irie M. Reversible diastereoselective photocyclization of diarylethenes in a bulk amorphous state[J]. Adv. Mater., 2004,16(7):643-645. doi: 10.1002/adma.200305815

    26. [26]

      Yamaguchi T, Uchida K, Irie M. Asymmetric photocyclization of diarylethene derivatives[J]. J. Am. Chem. Soc., 1997,119(26):6066-6071. doi: 10.1021/ja970200j

    27. [27]

      Kodani T, Matsuda K, Yamada T, Kobatake S, Irie M. Reversible diastereoselective photocyclization of a diarylethene in a single-crystalline phase[J]. J. Am. Chem. Soc., 2000,122(40):9631-9637. doi: 10.1021/ja001350o

    28. [28]

      Yamamoto S, Matsuda K, Irie M. Absolute asymmetric photocyclization of a photochromic diarylethene derivative in single crystals[J]. Angew. Chem. Int. Ed., 2003,42(14):1636-1639. doi: 10.1002/anie.200250417

    29. [29]

      De Jong J J D, Lucas L N, Hania R, Pugzlys A, Kellogg R M, Feringa B L, Duppen K, van Esch J H. Photochromic properties of perhydro- and perfluorodithienylcyclopentene molecular switches[J]. Eur. J. Org. Chem., 2003(10):1887-1893.

    30. [30]

      Castagna R, Nardone V, Pariani G, Biancoc A. The interplay of soft-hard substituents in photochromic diarylethenes[J]. J. Photochem. Photobiol. A: Chem., 2016,325:45-54. doi: 10.1016/j.jphotochem.2016.04.001

    31. [31]

      Tsai F C, Chang C C, Liu C L, Chen W C, Jenekhe S A. New thiophene-linked conjugated poly(azomethine)s: Theoretical electronic structure, synthesis, and properties[J]. Macromolecules, 2005,38(5):1958-1966. doi: 10.1021/ma048112o

    32. [32]

      Tsivgoulis G M, Lehn J M. Photoswitched and functionalized oligothiophenes: Synthesis and photochemical and electrochemical properties[J]. Chem.-Eur. J., 1996,2(11):1399-1406. doi: 10.1002/chem.19960021112

    33. [33]

      Perrier A, Maurel F, Aubard J. Theoretical investigation of the substituent effect on the electronic and optical properties of photochromic dithienylethene derivatives[J]. J. Photochem. Photobiol. A: Chem., 2007,189(2/3):167-176.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    8. [8]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    9. [9]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    10. [10]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    11. [11]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    12. [12]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    13. [13]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    14. [14]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    15. [15]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    16. [16]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    17. [17]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    18. [18]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    19. [19]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    20. [20]

      Bo YuPengchen DuJianwen GuoHanshen XinJianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321

Metrics
  • PDF Downloads(4)
  • Abstract views(456)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return