Citation: Zi-Wei XIAO, Ze-Yu XU, Jian-Ming WANG. Solution-phase synthesis of bimetallic (Sn/Ni) doped porous silicon microspheres with electrochemical lithium storage[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1031-1041. doi: 10.11862/CJIC.2023.060 shu

Solution-phase synthesis of bimetallic (Sn/Ni) doped porous silicon microspheres with electrochemical lithium storage

  • Corresponding author: Jian-Ming WANG, wjm@zju.edu.cn
  • Received Date: 1 January 2023
    Revised Date: 7 March 2023

Figures(9)

  • Novel bimetallic (Sn/Ni) doped porous silicon microspheres (pSi@SnNi) were prepared by a simple chemical deposition method, using an inexpensive silicon-aluminum alloy precursor. The three-dimensional porous structure of pSi@SnNi composites can buffer the huge volume expansion of silicon in the lithiation process and increase lithium storage active sites. The deposition and doping of bimetallic (Sn/Ni) may improve the electronic conductivity of Si as well as enhance the structural stability of pSi. Profiting from the unique composition and microstructure, the pSi@SnNi composite with moderate Sn/Ni content showed large reversible lithium storage capacity (2 651.7 mAh·g-1 at 0.1 A·g-1), high electrochemical cycling stability (1 139 mAh·g-1 after 400 cycles at 1 A·g-1), and excellent rate capability (1 235.8 mAh·g-1 at 2.5 A·g-1).
  • 加载中
    1. [1]

      Tang F, Sun Y G, Dai G X, Yan J L, Lin X J, Qiu J H, Cao A M. Template-free synthesis of Co-based oxides nanotubes as potential anodes for lithium-ion batteries[J]. J. Alloy. Compd., 2022,895162611. doi: 10.1016/j.jallcom.2021.162611

    2. [2]

      SUN L, XIE J, LIU T, HUANG S C, ZHANG L, CHEN Z D, JIANG R Y, JIN Z. Preparation of porous silicon nanomaterials and applications in high energy lithium ion batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):393-405.  

    3. [3]

      Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective[J]. J. Am. Chem. Soc., 2013,135(4):1167-1176. doi: 10.1021/ja3091438

    4. [4]

      Obrovac M N, Krause L J. Reversible cycling of crystalline silicon powder[J]. J. Electrochem. Soc., 2007,154(2):A103-A108. doi: 10.1149/1.2402112

    5. [5]

      Li L, Deng J, Wang L, Wang C L, Hu Y H. Boron-doped and carboncontrolled porous Si/C anode for high-performance lithium-ion batteries[J]. ACS Appl. Energy Mater., 2021,4(8):8488-8495. doi: 10.1021/acsaem.1c01688

    6. [6]

      Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage[J]. Nat. Mater., 2015,14(3):271-279. doi: 10.1038/nmat4170

    7. [7]

      Yu D D, Chen Q Q, Wan J, Li W, Pan L H, Zhao Z H, Egunb I, Tang Z H, He H Y. Supersized graphitic tube@MoS2 pipelines with abundant ion channels synthesized by selective deposition toward high-performance anodes[J]. ACS Appl. Energy Mater., 2021,4(7):6866-6873. doi: 10.1021/acsaem.1c00956

    8. [8]

      Zhang T, Xu Z X, Guo Y S, Liang C D, Wang J L, Yang J. Building high performance silicon-oxygen and silicon-sulfur battery by in-situ lithiation of fibrous Si/C anode[J]. J. Alloy. Compd., 2019,806:335-342. doi: 10.1016/j.jallcom.2019.07.244

    9. [9]

      Yang D D, Shi J, Shi J H, Yang H B. Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries[J]. Electrochim. Acta, 2018,259:1081-1088. doi: 10.1016/j.electacta.2017.10.117

    10. [10]

      Li X L, Gu M, Hu S Y, Kennard R, Yan P F, Chen X L, Wang C M, Sailor M J, Zhang J G, Liu J. Mesoporous silicon sponge as an antipulverization structure for high-performance lithium-ion battery anodes[J]. Nat. Commun., 2014,54105. doi: 10.1038/ncomms5105

    11. [11]

      Liang C, Gao M X, Pan H G, Liu Y F, Yan M. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries[J]. J. Alloy. Compd., 2013,575:246-256. doi: 10.1016/j.jallcom.2013.04.001

    12. [12]

      Guo J F, Pei S E, He Z S, Huang L A, Lu T Z, Gong J J, Shao H B, Wang J M. Novel porous Si-Cu3Si-Cu microsphere composites with excellent electrochemical lithium storage[J]. Electrochim. Acta, 2020,348136334. doi: 10.1016/j.electacta.2020.136334

    13. [13]

      GONG J J, WANG J M. Photodeposition for preparing porous Si@CoOx composites as high-performance anode material for lithium-ion batteries[J]. Chinese J. Inorg. Chem., 2021,37(10):1773-1781. doi: 10.11862/CJIC.2021.199 

    14. [14]

      Jiao M L, Wang Y F, Ye C L, Wang C Y, Zhang W K, Liang C. Highcapacity SiOx (0 ≤ x ≤ 2) as promising anode materials for next-generation lithium-ion batteries[J]. J. Alloy. Compd., 2020,842155774. doi: 10.1016/j.jallcom.2020.155774

    15. [15]

      Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. J. Power Sources, 2011,196(1):13-24. doi: 10.1016/j.jpowsour.2010.07.020

    16. [16]

      Sun Y M, Liu N A, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nat. Energy, 2016,1:1-12.  

    17. [17]

      Jin Y, Zhu B, Lu Z D, Liu N, Zhu J. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Adv. Energy Mater., 2017,7(23)1700715. doi: 10.1002/aenm.201700715

    18. [18]

      FENG X J, YANG J, NULI Y N, WANG J L. Synthesis and lithium storage performance of porous silicon/carbon composite material from SiCl4[J]. Chinese J. Inorg. Chem., 2013,29(11):2289-2296.  

    19. [19]

      Bao Z H, Weatherspoon M R, Shian S, Cai Y, Graham P D, Allan S M, Ahmad G, Dickerson M B, Church B C, Kang Z T, Abernathy Ⅲ H W, Summers C J, Liu M L, Sandhage K H. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007,446(7132):172-175. doi: 10.1038/nature05570

    20. [20]

      Sun W, Kherani N P, Hirschman K D, Gadeken L L, Fauchet P M. A three-dimensional porous silicon p-n diode for betavoltaics and photovoltaics[J]. Adv. Mater., 2005,17(10):1230-1233. doi: 10.1002/adma.200401723

    21. [21]

      Kim M K, Shin W H, Jeong H M. Protective carbon-coated silicon nanoparticles with graphene buffer layers for high performance anodes in lithium-ion batteries[J]. Appl. Surf. Sci., 2019,467:926-931.  

    22. [22]

      Nulu A, Nulu V, Sohn K Y. Si/SiOx nanoparticles embedded in a conductive and durable carbon nanoflake matrix as an efficient anode for lithium-ion batteries[J]. ChemElectroChem, 2020,7(19):4055-4065. doi: 10.1002/celc.202001130

    23. [23]

      ZHANG L, WANG J, TANG Y P, GUO Y Z, HUANG R A. Preparation and Li+-storage behaviour of ordered mesoporous Si/C composite structure[J]. Chinese J. Inorg. Chem., 2020,36(5):893-900.  

    24. [24]

      Yi R, Zai J T, Dai F, Gordin M L, Wang D H. Improved rate capability of Si-C composite anodes by boron doping for lithium-ion batteries[J]. Electrochem. Commun., 2013,36:29-32. doi: 10.1016/j.elecom.2013.09.004

    25. [25]

      Li P, Hwang J Y, Sun Y K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019,13(2):2624-2633.  

    26. [26]

      Domi Y, Usui H, Shimizu M, Kakimoto Y, Sakaguchi H. Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2016,8(11):7125-7132. doi: 10.1021/acsami.6b00386

    27. [27]

      Lv G X, Zhu B, Li X Q, Chen C L, Li J L, Jin Y, Hu X Z, Zhu J. Simultaneous perforation and doping of Si nanoparticles for lithiumion battery anode[J]. ACS Appl. Mater. Interfaces, 2017,9(51):44452-44457. doi: 10.1021/acsami.7b12898

    28. [28]

      Ge M Y, Rong J P, Fang X, Zhou C W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Lett., 2012,12(5):2318-2323. doi: 10.1021/nl300206e

    29. [29]

      Zhang J M, Zhou X Y, Tang J J, Ren Y P, Jiang M, Tang Y G, Wang H Y, Yang J. Phosphoric acid induced homogeneous crosslinked phosphorus doped porous Si nanoparticles with superior lithium storage performance[J]. Appl. Surf. Sci., 2020,509144873. doi: 10.1016/j.apsusc.2019.144873

    30. [30]

      Zhu B, Liu G L, Lv G X, Mu Y, Zhao Y L, Wang Y X, Li X Q, Yao P C, Deng Y, Cui Y, Zhu J. Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes[J]. Sci. Adv., 2019,5(11)eaax0651. doi: 10.1126/sciadv.aax0651

    31. [31]

      Xu Z Y, Hou Y P, Guo J F, Wang J M, Zhou S D. Metallic tin nanoparticle-reinforced tin-doped porous silicon microspheres with superior electrochemical lithium storage properties[J]. ACS Appl. Energy Mater., 2021,4(12):14141-14154. doi: 10.1021/acsaem.1c02916

    32. [32]

      Mahmood N, Zhu J H, Rehman S, Li Q, Hou Y L. Control over largevolume changes of lithium battery anodes via active-inactive metal alloy embedded in porous carbon[J]. Nano Energy, 2015,15:755-765. doi: 10.1016/j.nanoen.2015.05.035

    33. [33]

      Kim Y J, Kim M H, Yang J H, Park J W. Electrochemical properties of aluminum-doped silicon films as anode materials for lithium-ion batteries[J]. J. Korean Phys. Soc., 2006,49(3):1196-1201.  

    34. [34]

      Nulu A, Nulu V, Sohn K Y. Influence of transition metal doping on nano silicon anodes for Li-ion energy storage applications[J]. J. Alloy. Compd., 2022,911164976. doi: 10.1016/j.jallcom.2022.164976

    35. [35]

      Magagnin L, Maboudian R, Carraro C. Gold deposition by galvanic displacement on semiconductor surfaces: Effect of substrate on adhesion[J]. J. Phys. Chem. B, 2002,106(2):401-407. doi: 10.1021/jp013396p

    36. [36]

      Luo C C, Zhou X Y, Ding J, Yang J, Zhou H C, Wang X M, Tang J J. In-situ migration of Ni induced crystallization to boost the initial coulombic efficiency of nano Si anode for lithium ion batteries[J]. Compos. Commun., 2022,32101157. doi: 10.1016/j.coco.2022.101157

    37. [37]

      Xia M T, Chen B J, Gu F, Zu L H, Xu M Z, Feng Y T, Wang Z J, Zhang H J, Zhang C, Yang J H. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance[J]. ACS Nano, 2020,14(4):5111-5120. doi: 10.1021/acsnano.0c01976

    38. [38]

      Ye X C, Lin Z H, Liang , S J, Huang X H, Qiu X Y, Qiu Y C, Liu X M, Xie D, Deng H, Xiong X H, Lin Z. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance[J]. Nano Lett., 2019,19(3):1860-1866. doi: 10.1021/acs.nanolett.8b04944

    39. [39]

      Nie M, Abraham D P, Chen Y, Bose A, Lucht B L. Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy[J]. J. Phys. Chem. C, 2013,117(26):13403-13412. doi: 10.1021/jp404155y

    40. [40]

      Huang W, Wang H, Boyle D T, Li Y Z, Cui Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solidelectrolyte interphases by cryogenic electron microscopy[J]. ACS Energy Lett., 2020,5(4):1128-1135. doi: 10.1021/acsenergylett.0c00194

    41. [41]

      Pathak R, Chen K, Gurung A, Reza K M, Bahrami B, Pokharel J, Baniya A, He W, Wu F, Zhou Y, Xu K, Qiao Q Q. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition[J]. Nat. Commun., 2020,11(1)93. doi: 10.1038/s41467-019-13774-2

    42. [42]

      Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Pérès J P, Talaga D, Couzi M, Tarascon J M. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites[J]. Adv. Funct. Mater., 2007,17(11):1765-1774. doi: 10.1002/adfm.200600937

    43. [43]

      Wang H X, Song H C, Lin Z X, Jiang X F, Zhang X W, Yu L W, Xu J, Pan L J, Wang J Z, Zheng M B, Shi Y, Chen K J. Highly crosslinked Cu/a-Si core-shell nanowires for ultra-long cycle life and high rate lithium batteries[J]. Nanoscale, 2016,8(5):2613-2619. doi: 10.1039/C5NR06985H

    44. [44]

      Wu L L, Zhou H C, Yang J, Zhou X Y, Ren Y P, Nie Y, Chen S. Carbon coated mesoporous Si anode prepared by a partial magnesiothermic reduction for lithium-ion batteries[J]. J. Alloy. Compd., 2017,716:204-209. doi: 10.1016/j.jallcom.2017.05.057

    45. [45]

      Wu L L, Yang J, Zhou X Y, Zhang M F, Ren Y P, Nie Y. Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries[J]. J. Mater. Chem. A, 2016,4(29):11381-11387. doi: 10.1039/C6TA04398D

    46. [46]

      Kravchyk K, Protesescu L, Bodnarchuk M I, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko M V. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes[J]. J. Am. Chem. Soc., 2013,135(11):4199-4202. doi: 10.1021/ja312604r

    47. [47]

      Wang K, Pei S E, He Z S, Huang L A, Zhu S S, Guo J F, Shao H B, Wang J M. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chem. Eng. J., 2019,356:272-281. doi: 10.1016/j.cej.2018.09.027

    48. [48]

      He Z S, Huang L A, Guo J F, Pei S E, Shao H B, Wang J M. Novel hierarchically branched CoC2O4@CoO/Co composite arrays with superior lithium storage performance[J]. Energy Storage Mater., 2020,24:362-372. doi: 10.1016/j.ensm.2019.07.037

    49. [49]

      Rashed M Z, Kopechek J A, Priddy M C, Hamorsky K T, Palmer K E, Mittal N, Valdez J, Flynn J, Williams S J. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector[J]. Biosens. Bioelectron., 2021,171112709. doi: 10.1016/j.bios.2020.112709

    50. [50]

      Wang B, Ryu J, Choi S, Zhang X H, Pribat D, Li X L, Zhi L J, Park S, Ruoff R S. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities[J]. ACS Nano, 2019,13(2):2307-2315.  

    51. [51]

      Tian Y, An Y L, Feng J K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019,11(10):10004-10011. doi: 10.1021/acsami.8b21893

    52. [52]

      Huang L A, He Z S, Guo J F, Pei S E, Shao H B, Wang J M. Selfassembled three-dimensional graphene aerogel with an interconnected porous structure for lithium-ion batteries[J]. ChemElectroChem, 2019,6(10):2698-2706. doi: 10.1002/celc.201900445

    53. [53]

      Lu Z D, Liu N, Lee H W, Zhao J, Li W Y, Li Y Z, Cui Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes[J]. ACS Nano, 2015,9(3):2540-2547. doi: 10.1021/nn505410q

    54. [54]

      Lu J, Chen Z W, Pan F, Cui Y, Amine K. High-performance anode materials for rechargeable lithium-ion Batteries[J]. Electrochem. Energy Rev., 2018,1(1):35-53. doi: 10.1007/s41918-018-0001-4

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(3)
  • Abstract views(1070)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return