Citation: Min WANG, Meng-Yao YANG, Si-Yu CHEN, Ying-Qiu PU. Application of bilayer-structured CeO2 photoande in dye-sensitized solar cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 883-890. doi: 10.11862/CJIC.2023.057 shu

Application of bilayer-structured CeO2 photoande in dye-sensitized solar cells

  • Corresponding author: Min WANG, 060130@yzu.edu.cn
  • Received Date: 1 December 2022
    Revised Date: 7 April 2023

Figures(8)

  • Different composite photoanodes with double-layer structure applied to dye-sensitized solar cell (DSSC) can be prepared by core - shell structure Au@SiO2@CeO2 nanospheres synthesized by hydrothermal method. The results showed that the photoelectric conversion efficiency of the solar cells could be significantly improved when CeO2 nanospheres and Au@SiO2@CeO2 nanospheres coating were applied to the photoanode scattering layer of DSSC. Compared with the pure TiO2 (P25) photoanode, the photoelectric property of P25/CeO2 nanosphere photoanode cells increased by 15.3%, and that of P25/Au@SiO2@CeO2 nanosphere photoanode cells increased by 27.9%. Why the photoelectric property of DSSC can be enhanced is mainly attributed to the following two dimensions. On the one hand, the light scattering effect of the photoanode film is effectively heightened by the localized plasmon resonance of the Au nanoparticles. On the other hand, the light scattering effect and the electron transmission capacity are enhanced since the CeO2 has the high load capacity in the dye, the core-shell structure with a high specific surface area.
  • 加载中
    1. [1]

      Gratzel M. Recent advances in sensitized mesoscopic solar cells[J]. Acc. Chem. Res., 2009,42:1788-1798. doi: 10.1021/ar900141y

    2. [2]

      O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353(6346):737-739. doi: 10.1038/353737a0

    3. [3]

      Kay K, Gratzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins[J]. J. Phys. Chem., 1993,97(23):6272-6277. doi: 10.1021/j100125a029

    4. [4]

      Van de Lagemaat J, Park N G, Frank A J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques[J]. J. Phys. Chem. B, 2000,104(9):2044-2052. doi: 10.1021/jp993172v

    5. [5]

      Vesce L, Riccitelli R, Soscia G, Brown T M, Carlo A D, Reale A. Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment[J]. J. Non-Cryst. Solids, 2010,356(37/38/39/40):1958-1961.

    6. [6]

      Rustomj C S, Frandsen C J, Jin S, Tauber M J. Dye sensitized solar cell constructed with titanium mesh and 3D array of TiO2 nanotubes[J]. J. Phys. Chem. B, 2010,114(45):14537-14543. doi: 10.1021/jp102299g

    7. [7]

      Nazeeruddin M K, Humphry-Baker R, Liska P, Gratzel M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell[J]. J. Phys. Chem. B, 2003,107(34):8981-8987. doi: 10.1021/jp022656f

    8. [8]

      Kim M H, Kwon Y U. Semiconductor CdO as a blocking layer material on DSSC electrode: Mechanism and application[J]. J. Phys. Chem. C, 2009,113(39):17176-17182. doi: 10.1021/jp904206a

    9. [9]

      Wiley B J, Chen Y, McLellan J M, Xiong Y J, Li Z Y. Synthesis and optical properties of silver nanobars and nanorice[J]. Nano Lett., 2007,7(4):1032-1036. doi: 10.1021/nl070214f

    10. [10]

      Lee Y W, Kim M, Kim Z H, Han S W. One-step synthesis of Au@Pd core-shell nanooctahedron[J]. J. Am. Chem. Soc., 2009,131(47):17036-17037. doi: 10.1021/ja905603p

    11. [11]

      Zhang Q, Li W Y, Moran C, Zeng J, Chen J Y, Wen L P, Xia Y N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties[J]. J. Am. Chem. Soc., 2010,132(32):11372-11378. doi: 10.1021/ja104931h

    12. [12]

      Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Adv. Mater., 2004,16(19):1685-1706. doi: 10.1002/adma.200400271

    13. [13]

      Liu N G, Prall B S, Klimov V I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions[J]. J. Am. Chem. Soc., 2006,128(48):15362-15363. doi: 10.1021/ja0660296

    14. [14]

      Aslan K, Wu M, Lakowicz J R, Geddes C D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms[J]. J. Am. Chem. Soc., 2007,129(6):1524-1525. doi: 10.1021/ja0680820

    15. [15]

      Lu X H, Xie S L, Zhai T, Zhao Y F, Zhang P, Zhang Y L, Tong Y X. Monodisperse CeO2/CdS heterostructured spheres: One-pot synthesis and enhanced photocatalytic hydrogen activity[J]. RSC Adv., 2011,1(7):1207-1210. doi: 10.1039/c1ra00252j

    16. [16]

      Corma A, Atienzar P, Garcia H, Chane-Ching J Y. Hierarchically mesostructured doped CeO2 with potential for solar cell use[J]. Nat. Mater., 2004,3(6):394-397. doi: 10.1038/nmat1129

    17. [17]

      Kadowaki H, Saito N, Nishiyama H, Inoue Y. RuO2-loaded Sr2+-doped CeO2 with d0 electronic configuration as a new photocatalyst for overall water splitting[J]. Chem. Lett., 2007,36(3):440-441. doi: 10.1246/cl.2007.440

    18. [18]

      Lu X H, Zheng D Z, Zhang P, Liang C L, Liu P. Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications[J]. Chem. Commun., 2010,46(41):7721-7723. doi: 10.1039/c0cc01854f

    19. [19]

      Lu X H, Zhai T, Cui H N, Xie S L, Huang Y Y, Liang C L, Tong Y X. Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods[J]. J. Mater. Chem., 2011,21(15):5569-5572. doi: 10.1039/c0jm04466k

    20. [20]

      Song S, Xu L J, He Z Q, Chen J M, Xiao X Z, Yan B. Mechanism of the photocatalytic degradation of C.l. reactive black 5 at pH 12.0 using SrTiO3/CeO2 as the catalyst[J]. Environ. Sci. Technol., 2007,41(16):5846-5853. doi: 10.1021/es070224i

    21. [21]

      Liyanage A D, Perera S D, Tan K, Chabal Y, Balkus Jr K J. Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods[J]. ACS Catal., 2014,4(2):577-584. doi: 10.1021/cs400889y

    22. [22]

      QU X F, LIU M H, ZHANG M Q, XIONG Q, DU F L. Effect of CeO2 doping on performance of dye sensitized solar cells based on TiO2 photoanodes[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2018,39(1):40-46.  

    23. [23]

      Li W, Xie S, Li M Y, Ouyang X W, Cui G F, Lu X H, Tong Y X. CdS/CeOx heterostructured nanowires for photocatalytic hydrogen production[J]. J. Mater. Chem. A, 2013,1(13):4190-4193. doi: 10.1039/c3ta10394c

    24. [24]

      Wang G M, Ling Y C, Lu X H, Wang H Y, Qian F, Tong Y X, Li Y. Solar driven hydrogen releasing from urea and human urine[J]. Energy Environ. Sci., 2012,5(8):8215-8219. doi: 10.1039/c2ee22087c

    25. [25]

      Warule S S, Chaudhari N S, Kale B B, Patil K R, Koinkar P M, More M A, Murakami R. Organization of cubic CeO2 nanoparticles on the edges of self assembled tapered ZnO nanorods via a template free one-pot synthesis: Significant cathodoluminescence and field emission properties[J]. J. Mater. Chem., 2012,22(18):8887-8895. doi: 10.1039/c2jm30226h

    26. [26]

      Chen H J, Shao L, Li Q, Wang J F. Gold nanorods and their plasmonic properties[J]. Chem. Soc. Rev., 2013,42(7):2679-2724. doi: 10.1039/C2CS35367A

    27. [27]

      Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H, Wang Q Q. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS[J]. Nanoscale, 2013,5(12):5368-5374. doi: 10.1039/c3nr01170d

    28. [28]

      Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. J. Am. Chem. Soc., 2004,126(28):8648-8649. doi: 10.1021/ja047846d

    29. [29]

      LEI W, ZHU Y D, LUO S M D, WANG Z, LIU J X, LI M Y, BAI L H, LI M Y. Core-shell structure nano-Au@SiO2 improved performance of dye-sensitized solar cell[J]. Journal of Wuhan University (Natural Science Edition), 2017,63(4):330-336.  

    30. [30]

      Qi J F, Dang X N, Hammond P T, Belcher A M. Highly efficient plasmon enhanced dye sensitized solar cells through metal@oxide core shell nanostructure[J]. ACS Nano, 2011,5(9):7108-7116. doi: 10.1021/nn201808g

    31. [31]

      Luoshan M, Bai L H, Bu C H, Liu X L, Zhu Y D, Guo K M, Jiang R H, Li M Y, Zhao X Z. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4: Yb3+, Er3+@SiO2@Au@TiO2 crystallites for dye-sensitized solar cells[J]. J. Power Sources, 2016,307:468-473. doi: 10.1016/j.jpowsour.2016.01.028

    32. [32]

      Choi H B, Chen W T, Kamat P S. Kown thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye sensitized solar cells[J]. ACS Nano, 2012,6(5):4418-4427. doi: 10.1021/nn301137r

    33. [33]

      XIE H, HUANG C Y, LUO S M D, PEI L. Performance enhancement in dye-sensitized solar cells by Au nanoparticles[J]. Journal of Hubei University of Technology, 2019,34(5):37-41. doi: 10.3969/j.issn.1003-4684.2019.05.009

    34. [34]

      Wang Q, Moser J E, Gratzel M. Electrochemical impedance spectroscopic analysis of dye sensitized solar cells[J]. J. Phys. Chem. B, 2005,109(31):14945-14953. doi: 10.1021/jp052768h

    35. [35]

      Dong Z, Lai X, Halpert J E, Yang N, Yi L, Zhai J, Wang D, Tang Z, Jiang L. Accurate control of multishelled ZnO hollow microspheres for dye sensitized solar cells with high efficiency[J]. Adv. Mater., 2012,24(8):1046-1049. doi: 10.1002/adma.201104626

    36. [36]

      Muduli S, Game O, Dhas V, Vijayamohanan K, Bogle K A, Valanoor N, Ogale S B. TiO2 Au plasmonic nanocomposite for enhanced dye sensitized solar cell (DSSC) performance[J]. Sol. Energy, 2012,86(5):1428-1434. doi: 10.1016/j.solener.2012.02.002

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    20. [20]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

Metrics
  • PDF Downloads(7)
  • Abstract views(581)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return