Citation: Ling HUANG, Cheng-Zhi ZHANG, Jun TAN. Effect of calcination time on structure and characterization of a full concentration-gradient LiNi0.80Co0.15Al0.05O2 cathode material[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 979-991. doi: 10.11862/CJIC.2023.054 shu

Effect of calcination time on structure and characterization of a full concentration-gradient LiNi0.80Co0.15Al0.05O2 cathode material

  • Corresponding author: Jun TAN, tanjun@jihualab.ac.cn
  • Received Date: 8 December 2022
    Revised Date: 31 March 2023

Figures(9)

  • Core-shell structure precursor Ni0.80Co0.15Al0.05(OH)2 was synthesized via co-precipitation by adjusting the Al solution with three flow rates (Each flow rate worked for three hours). The core of the precursor was a uniform structure with a composition of Ni0.88Co0.12(OH)2; and the shell of the precursor was a concentration-gradient structure with a composition of Ni0.72Co0.18Al0.10(OH)2, which Ni content decreased gradually while Al content increased steadily from the surface of the core to the particle surface. A mixture of this core-shell structure precursor and LiOH·H2O was sintered at 700 ℃ for different sintering times in the O2 atmosphere to obtain a full concentration gradient and spherical LiNi0.80Co0.15Al0.05O2. The diffusion of Ni, Co, and Al under different calcination times led to a concentration gradient variation of LiNi0.80Co0.15Al0.05O2, which displayed different electrochemical performance. When the sintering time was 12 h, the obtained material had a well-designed concentration-gradient structure: from the core to particle surface, the content (atomic fraction) of Ni decreased from 0.855 to 0.732, while the content of Al content increased steadily from 0.003 to 0.115. And the content of Co first increased from 0.142 to 0.163 and then decreased to 0.153. This cathode material had a lower degree of cation mixing and well-developed layered characteristics. It had a discharge capacity of 201.3 mAh·g-1 at 0.2C, which was just under 205.8 mAh·g-1 of the homogeneous one; and it showed excellent capacity retention of 71.6% after 200 cycles, which was much higher than that of the homogeneous material (54.6%). It is attributed to a good Ni-deficient and Al/Co-rich out-layer, which can reduce anisotropic volume variations and electrode polarization during cycling. As a result, it could reduce the charge-transfer resistance of the electrode, and prevent the formation and extension of micro-cracks on the electrode′s surface. This cathode material is easy for industrial application because the pH value of the co-precipitation reaction is quite stable and its concentration gradient structure is controllable by adjusting the flow rates of the Al solution and the calcination time. Furthermore, the pH value of the co-precipitation reaction shifted only when the injection rate of the Al solution was adjusted. After that, the pH value quickly returned to keep constant, and the precursor had high crystallinity and good consistency of the material.
  • 加载中
    1. [1]

      Hwang S, Chang W Y, Kim S M, Su D, Kim D H, Lee J Y, Chung K Y, Stach E A. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge[J]. Chem. Mater., 2014,26(2):1084-1092. doi: 10.1021/cm403332s

    2. [2]

      Li Y J, Wang S L, Chen Y X, Lei T X, Deng S Y, Zhu J, Zhang J P, Guo J. Achieving superior electrochemical performances on LiNi0.8Co0.15Al0.05O2 cathode materials by cadmium oxide modification[J]. Mater. Chem. Phys., 2020,2401220299.

    3. [3]

      Mohammad M L, Hossein M M, Rahim E. Y2O3-decorated LiNi0.8Co0.15Al0.05O2 cathode material with improved electrochemical performance for lithium-ion batteries[J]. J. Electroanal. Chem., 2019,848113326. doi: 10.1016/j.jelechem.2019.113326

    4. [4]

      SU Y F, ZHANG Q Y, CHEN L, BAO L Y, LU Y, CHEN S, WU F. Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities[J]. Acta Phys.-Chim. Sin., 2021,37(3):110-117.  

    5. [5]

      Wu G, Zhou Y K. TiP2O7-coated LiNi0.8Co0.15Al0.05O2 cathode materials with improved thermal stability and superior cycle life[J]. J. Energy Chem., 2019,28:151-159. doi: 10.1016/j.jechem.2018.01.018

    6. [6]

      Kim U H, Park N Y, Park G T, Kim H, Yoon C S, Sun Y K. High-energy W-doped Li[Ni0.95Co0.04Al0.01]O2 cathodes for next-generation electric vehicles[J]. Energy Storage Mater., 2020,33:399-407. doi: 10.1016/j.ensm.2020.08.013

    7. [7]

      Wan D Y, Fan Z Y, Dong Y X, Baasanjav E, Jun H B, Jin B, Jin E M, Jeong S M. Effect of metal (Mn, Ti) doping on NCA cathode materials for lithium ion batteries[J]. J. Nanomater., 2018,2018:1-9.

    8. [8]

      WANG W D, QIU W H, DING Q Q. Nickel cobalt manganese based cathode materials for Li-ion batteries technology production and application. Beijing: Chemical Industry Press, 2015: 68-90, 180-187

    9. [9]

      HU G R, HUANG J L, DU K, CAO Y B, PENG Z D. Synthesis of high capacity gradient cathode material Li[Ni0.85Co0.08Mn0.07]O2 for lithium ion battery[J]. Chinese J. Inorg. Chem., 2019,35(7):1139-1147.  

    10. [10]

      Duan J G, Peng D, Wang D, Li X, Xiao Z W, Zhang Y J, Hu G R. A facile structure design of LiNi0.90Co0.07Al0.03O2 as advanced cathode materials for lithium ion batteries via carbonation decomposition of NaAl(OH)4 solution[J]. J. Alloy. Compd., 2017,739:335-344.

    11. [11]

      Sun Y K, Kim D H, Jung H G, Myung S T, Amine K. A facile structure design concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries[J]. Electrochim. Acta, 2010,55:8621-8627. doi: 10.1016/j.electacta.2010.07.074

    12. [12]

      Yoo G W, Jang B, Son J T. Novel design of core shell structure by NCA modification on NCM cathode material to enhance capacity and cycle life for lithium secondary battery[J]. Ceram. Int., 2015,41:1913-1916. doi: 10.1016/j.ceramint.2014.09.077

    13. [13]

      Park K J, Choi M J, Maglia F, Kim S J, Kim K H, Yoon C S, Sun Y K. High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries[J]. Adv. Energy Mater., 2018,9(8)1703612.

    14. [14]

      Hua W B, Schwarz B, Azmi R, Müllers M, Darma M, Knapp M, Senyshyn A, Missyul A, Simonelli L, Binder J R, Indris S, Ehrenberg H. Lithium-ion (de) intercalation mechanism in core-shell layered Li(Ni, Co, Mn)O2 cathode materials[J]. Nano Energy, 2020,78(3)105231.

    15. [15]

      Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klöpsch R K, Vortmann B, Hahn H, Nowak S, Amereller M, Gentschev A C, Lamp P, Winter M. The truth about the 1st cycle coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes[J]. Phys. Chem. Chem. Phys., 2016,18(5):3956-3965. doi: 10.1039/C5CP07718D

    16. [16]

      Venkatraman S, Choi J, Manthiram A. Factors influencing the chemical lithium extraction rate from layered LiNi1-y-zCoyMnzO2 cathodes[J]. Electrochem. Commun., 2004,6(8):832-837. doi: 10.1016/j.elecom.2004.06.004

    17. [17]

      Duan J G, Hu G R, Cao Y B, Tan C P, Wu C, Du K, Peng Z D. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping[J]. J. Power Sources, 2016,326:322-330. doi: 10.1016/j.jpowsour.2016.07.008

    18. [18]

      Liang M, Sun Y M, Song D W, Shi X X, Han Y, Zhang H Z, Zhang L Q. Superior electrochemical performance of quasi-concentration-gradient LiNi0.8Co0.15Al0.05O2 cathode material synthesized with multi-shell precursor and new aluminum source[J]. Electrochim. Acta, 2019,300:426-436. doi: 10.1016/j.electacta.2019.01.125

    19. [19]

      GUO Y, HUANG L, XIAO F M, WANG Y, TANG R H. Preparation of high nickel system Li[(Ni0.88Co0.12)0.90(Ni0.80Co0.15Al0.05)0.10]O2 cathode material[J]. Chinese Journal of Power Sources, 2020,44(1):13-16.  

    20. [20]

      Institute of Rare Metals, Guangdong Academy of Sciences. Gradient content cathode material and preparation method: CN202010548402.0. 2020-10-13.

    21. [21]

      Huang L, Wang Y, Zhou Q, Xiao F M, Guo Y, Tang R H, Li W C. A facile structure design of concentration-gradient LiNi0.80Co0.15Al0.05O2 cathode material for lithium-ion batteries via controlling the flow rate of Al solution[J]. J. Alloy. Compd., 2021,857(15)157528.

    22. [22]

      Hiroaki K, Masanori Y, Tatsumi K. The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1-xCo0.1MoxO2 (x=0, 0.02, 0.04)[J]. J. Power Sources, 2013,244(15):23-28.

    23. [23]

      Lei Y K, Ai J J, Yang S A, Jiang H Y, Lai C Y, Xu Q J. Effect of flower-like Ni(OH)2 precursors on Li+/Ni2+ cation mixing and electrochemical performance of nickel-rich layered cathode[J]. J. Alloy. Compd., 2019,797:421-431. doi: 10.1016/j.jallcom.2019.05.065

    24. [24]

      Noh H J, Youn S, Yoon C S, Sun Y K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/4, 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. J. Power Sources, 2013,233(1):121-130.

    25. [25]

      Lee K K, Kim K B. Electrochemical and structural characterization of LiNi1-yCoyO2 (0≤y≤0.2) positive electrodes during initial cycling[J]. J. Electrochem. Soc., 2000,147(5):1709-1717. doi: 10.1149/1.1393422

    26. [26]

      Yoshizawa H, Ohzuku T. An application of cobalt nickel manganese oxide to high-power and high-energy density lithium-ion batteries[J]. J. Power Sources, 2007,174(2):813-817. doi: 10.1016/j.jpowsour.2007.06.153

    27. [27]

      Wu F, Li N, Su Y F, Shou H F, Bao L Y, Yang W, Zhang L J, An R, Chen S. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries[J]. Adv. Mater., 2013,25(27):3722-3727. doi: 10.1002/adma.201300598

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    3. [3]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    4. [4]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    7. [7]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    8. [8]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    9. [9]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    10. [10]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    12. [12]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    16. [16]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    17. [17]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    18. [18]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    19. [19]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    20. [20]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

Metrics
  • PDF Downloads(1)
  • Abstract views(816)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return