Citation: Yun-Long SHI, Zhen-Ya JIA, Qiang LIN, Xiao-Mao SONG, Chang-Jiang YU, Xiang-Hui WANG, Jian-Li XIE, Xiao-Jie LIANG, An-Qi SHANG, Yu-Xiao FEI. One-pot pyrolysis synthesis of Cu/Fe bimetallic biochar composites for high efficient adsorption of Pb2+[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 841-852. doi: 10.11862/CJIC.2023.052 shu

One-pot pyrolysis synthesis of Cu/Fe bimetallic biochar composites for high efficient adsorption of Pb2+

  • Corresponding author: Chang-Jiang YU, ycjhnsfdx@163.com
  • Received Date: 8 November 2022
    Revised Date: 1 March 2023

Figures(10)

  • In this study, Cu/Fe bimetallic biochar composites (BC@Cu/Fe-X, X=3, 5, 10) and Fe biochar composites (BC@Fe) were prepared by one-step pyrolysis. The effect of Cu doping amount on the BC@Cu/Fe-X adsorption of Pb2+ was investigated and the optimum doping ratio was determined. The results showed that BC@Cu/Fe-5 had the best adsorption performance for Pb2+. The effects of adsorption time, Pb2+ concentration, pH, coexisting ions, aging in air, and other experimental conditions on the adsorption of Pb2+ by BC@Cu/Fe-5 were studied. The adsorption behavior of BC@Cu/Fe-5 on Pb2+ was analyzed by fitting the kinetic and thermodynamic data. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and other characterization techniques were used to analyze the changes of the characteristic peaks before and after the BC@Cu/Fe-5 adsorption of Pb2+. The adsorption mechanism of BC@Cu/Fe-5 on Pb2+ is that about 42% of Pb2+ is reduced to Pb0, 33% of Pb2+ forms PbO/Pb(OH)2, and 25% of Pb2+ forms complexes with functional groups such as O—H, C—O, C=O, COO, and Fe—O. Cu doping can improve the ability of Fe to reduce Pb2+.
  • 加载中
    1. [1]

      Xing X Y, Li W Q, Zhang J, Wu H, Guan Y, Gao H. Tempo-oxidized cellulose hydrogel for efficient adsorption of Cu2+ and Pb2+ modified by polyethyleneimine[J]. Cellulose, 2021,28(12):7953-7968. doi: 10.1007/s10570-021-04052-w

    2. [2]

      Fu C C, Zhang L, Zhang K, Xiao B Y, Liu J X, Luan Q X, Liu J H. Effects of air-prepared atmosphere on the Pb2+ adsorption of sludge-based adsorbent[J]. Biomass Convers. Biorefinery, 2021. doi: 10.1007/s13399-021-01706-4

    3. [3]

      Zhang C Y, Luan J D, Yu X K, Chen W. Characterization and adsorption performance of graphene oxide-montmorillonite nanocomposite for the simultaneous removal of Pb2+ and p-nitrophenol[J]. J. Hazard. Mater., 2019,378120739. doi: 10.1016/j.jhazmat.2019.06.016

    4. [4]

      Liang Y, Xu J L, Koopal L K, Wang M X, Xiong J, Hou J T, Tan W F. Facet-dependent surface charge and Pb2+ adsorption characteristics of hematite nanoparticles: CD-MUSIC-eSGC modeling[J]. Environ. Res., 2021,196110383. doi: 10.1016/j.envres.2020.110383

    5. [5]

      Li W Q, Zhang L P, Hu D, Yang R, Zhang J, Guan Y, Lv F X, Gao H. A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+[J]. Int. J. Biol. Macromol., 2021,187:922-930. doi: 10.1016/j.ijbiomac.2021.07.181

    6. [6]

      Bagbi Y, Sarswat A, Tiwari S, Mohan D, Pandey A, Solanki P R. Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water[J]. Environ. Nanotechnol. Monit. Manage., 2017,7:34-45.

    7. [7]

      Xu L, Liu Y N, Wang J G, Tang Y, Zhang Z. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: Kinetic, thermal dynamic and DFT studies[J]. J. Hazard. Mater., 2021,404124140. doi: 10.1016/j.jhazmat.2020.124140

    8. [8]

      Jiao W Z, Song Y, Zhang D S, Chang G Z, Fang H L, Liu Y Z. Nanoscale zero-valent iron modified with carboxymethyl cellulose in an impinging stream-rotating packed bed for the removal of lead(Ⅱ)[J]. Adv. Powder Technol., 2019,30(10):2251-2261. doi: 10.1016/j.apt.2019.07.005

    9. [9]

      Wang Z, Wu X Q, Luo S X, Wang Y S, Tong Z, Deng Q. Shell biomass material supported nano-zero valent iron to remove Pb2+ and Cd2+ in water[J]. R. Soc. Open Sci., 2020,7(10)201192. doi: 10.1098/rsos.201192

    10. [10]

      CHEN H J, HUANG S Y, ZHANG Z B, LIU Y H, WANG X K. Synthesis of functional nanoscale zero-valent iron composites for the application of radioactive uranium enrichment from environment: A review[J]. Acta Chim. Sin., 2017,75(6):560-574.  

    11. [11]

      ZHAO Y, WANG T H, WANG Y B, NIE G X, WANG X H. Research progress of degradation of water pollutants by nano-scale zero-valent iron-based bimetallic composites[J]. Journal of North China Electric Power University, 2018,45(4):93-99. doi: 10.3969/j.ISSN.1007-2691.2018.04.12

    12. [12]

      Liu J W, Dai M, Song S X, Peng C S. Removal of Pb(Ⅱ) and Cr(Ⅵ) from aqueous solutions using the prepared porous adsorbent-supported Fe/Ni nanoparticles[J]. RSC Adv., 2018,8(56):32063-32072. doi: 10.1039/C8RA04324H

    13. [13]

      Babaee Y, Mulligan C N, Rahaman M S. Stabilization of Fe/Cu nanoparticles by starch and efficiency of arsenic adsorption from aqueous solutions[J]. Environ. Earth Sci., 2017,76(19)650. doi: 10.1007/s12665-017-6992-z

    14. [14]

      Bakshi S, Banik C, Rathke S J, Laird D A. Arsenic sorption on zero-valent iron-biochar complexes[J]. Water Res., 2018,137:153-163. doi: 10.1016/j.watres.2018.03.021

    15. [15]

      Yu C J, Zhang D S, Dong X Y, Lin Q. Pyrolytic behavior of a zero- valent iron biochar composite and its Cu(Ⅱ) removal mechanism[J]. RSC Adv., 2018,8(59):34151-34160. doi: 10.1039/C8RA05676E

    16. [16]

      Lawrinenko M, Laird D A, Van Leeuwen J H. Sustainable pyrolytic production of zerovalent iron[J]. ACS Sustain. Chem. Eng., 2016,5(1):767-773.

    17. [17]

      Zhuang M, Shi W, Wang H, Cui L Q, Quan G X, Yan J L. Carbothermal synthesis of Ni/Fe bimetallic nanoparticles embedded into graphitized carbon for efficient removal of chlorophenol[J]. Nanomaterials, 2021,111417. doi: 10.3390/nano11061417

    18. [18]

      Hu X L, Long L, Gong T J, Zhang J Q, Yan J P, Xue Y W. Enhanced alginate-based microsphere with the pore-forming agent for efficient removal of Cu2+[J]. Chemosphere, 2020,240124860. doi: 10.1016/j.chemosphere.2019.124860

    19. [19]

      Wang Q N, Zheng C L, Cui W, He F, Zhang J Y, Zhang T C, He C. Adsorption of Pb2+ and Cu2+ ions on the CS2-modified alkaline lignin[J]. Chem. Eng. J., 2019123581.

    20. [20]

      Liu C W, Ye J, Lin Y, Wu J, Price G W, Burton D, Wang Y X. Removal of cadmium(Ⅱ) using water hyacinth (eichhornia crassipes) biochar alginate beads in aqueous solutions[J]. Environ. Pollut., 2020,264114785. doi: 10.1016/j.envpol.2020.114785

    21. [21]

      Wu J, Zheng H, Zhang F, Zeng R J X, Xing B X. Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(Ⅵ) removal[J]. Chem. Eng. J., 2019,362:21-29. doi: 10.1016/j.cej.2019.01.009

    22. [22]

      Sun J H, Chen Y, Yu H Q, Yan L G, Du B, Pei Z G. Removal of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) from aqueous solutions by magnetic alginate microsphere based on Fe3O4/MgAl-layered double hydroxide[J]. J. Colloid Interface Sci., 2018,532:474-484. doi: 10.1016/j.jcis.2018.07.132

    23. [23]

      Yang H, Lu M J, Chen D, Chen R Y, Li L, Han W. Efficient and rapid removal of Pb(Ⅱ) from water by magnetic Fe3O4@MnO2 core-shell nanoflower attached to carbon microtube: Adsorption behavior and process study[J]. J. Colloid Interface Sci., 2020,563:218-228. doi: 10.1016/j.jcis.2019.12.065

    24. [24]

      Wu J H, Yan M J, Lv S H, Yin W Z, Bu H T, Liu L, Li P, Deng H, Zheng X Y. Preparation of highly dispersive and antioxidative nano zero- valent iron for the removal of hexavalent chromium[J]. Chemosphere, 2021,262127733. doi: 10.1016/j.chemosphere.2020.127733

    25. [25]

      Zeng Y B, Walker H, Zhu Q Z. Reduction of nitrate by nay zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles[J]. J. Hazard. Mater., 2017,324:605-616. doi: 10.1016/j.jhazmat.2016.11.032

    26. [26]

      Jiang S F, Ling L L, Chen W J, Li D C, Jiang H. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors[J]. Chem. Eng. J., 2019,359:572-583. doi: 10.1016/j.cej.2018.11.124

    27. [27]

      Roa S, Sirena M. Size effects on the optimization of the mechanical resistance and the electrical conductivity of cu thin films[J]. Mater. Today Commun., 2021,28102572. doi: 10.1016/j.mtcomm.2021.102572

    28. [28]

      Saeed A A H, Harun N Y, Sufian S, Bilad M R, Zakaria Z Y, Jagaba A H, Ghaleb A A S, Mohammed H G. Pristine and magnetic kenaf fiber biochar for Cd2+ adsorption from aqueous solution[J]. Int. J. Environ. Res. Public Health, 2021,18(15)7949. doi: 10.3390/ijerph18157949

    29. [29]

      Huang W, Tang Y X, Zhang X P, Luo Z, Zhang J Q. nZVI-biochar derived from Fe3O4-loaded rabbit manure for activation of peroxymonosulfate to degrade sulfamethoxazole[J]. J. Water Process. Eng., 2022,45102470. doi: 10.1016/j.jwpe.2021.102470

    30. [30]

      Wei E N, Wang K, Muhammad Y, Chen S H, Dong D Z, Wei Y Z, Fujita T. Preparation and conversion mechanism of different geopolymer-based zeolite microspheres and their adsorption properties for Pb2+[J]. Sep. Purif. Technol., 2022,282119971. doi: 10.1016/j.seppur.2021.119971

    31. [31]

      Bo S F, Luo J M, An Q D, Xiao Z Y, Wang H S, Cai W J, Zhai S R, Li Z C. Efficiently selective adsorption of Pb(Ⅱ) with functionalized alginate-based adsorbent in batch/column systems: Mechanism and application simulation[J]. J. Clean. Prod., 2020,250119585. doi: 10.1016/j.jclepro.2019.119585

    32. [32]

      CHEN Y W, WANG J L. Characteristics and mechanism of Cu2+ removal by zero-valent iron (ZVI) from aqueous solution[J]. Environmental Science, 2009,30(11):3353-3357. doi: 10.3321/j.issn:0250-3301.2009.11.037

    33. [33]

      Yang Y F, Xie Y L, Pang L C, Li M, Song X H, Wen J G, Zhao H Y. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(Ⅱ) and methylene blue[J]. Langmuir, 2013,29(34):10727-10736. doi: 10.1021/la401940z

    34. [34]

      Wang X D, Li Y, Dai T T, He X M, Chen M S, Liu C M, Liang R H, Chen J. Preparation of pectin/poly(m-phenylenediamine) microsphere and its application for Pb2+ removal[J]. Carbohydr. Polym., 2021,260117811. doi: 10.1016/j.carbpol.2021.117811

    35. [35]

      Liu T, Gou S H, He Y, Fang S W, Zhou L H, Gou G J, Liu L. N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment[J]. Carbohydr. Polym., 2021,269118355. doi: 10.1016/j.carbpol.2021.118355

    36. [36]

      Yang Y R, Zeng L, Lin Z K, Jiang H B, Zhang A P. Adsorption of Pb2+, Cu2+ and Cd2+ by sulfhydryl modified chitosan beads[J]. Carbohydr. Polym., 2021,274118622. doi: 10.1016/j.carbpol.2021.118622

    37. [37]

      Yu Y J H, Sun R J, Wang Z, Yao M, Wang G H. Self-supported graphene oxide/sodium alginate/1, 2-propanediamine composite membrane and its Pb2+ adsorption capability[J]. J. Environ. Chem. Eng., 2021,9(5)106254. doi: 10.1016/j.jece.2021.106254

    38. [38]

      Zarenezhad M, Zarei M, Ebratkhahan M, Hosseinzadeh M. Synthesis and study of functionalized magnetic graphene oxide for Pb2+ removal from wastewater[J]. Environ. Technol. Innovation, 2021,22101384. doi: 10.1016/j.eti.2021.101384

    39. [39]

      Zhang W W, Du W H, Wang F, Xu H T, Zhao T H, Zhang H J, Ding Y, Zhu W Q. Comparative study on Pb2+ removal from aqueous solutions using biochars derived from cow manure and its vermicompost[J]. Sci. Total Environ., 2020,716137108. doi: 10.1016/j.scitotenv.2020.137108

    40. [40]

      Hakimifar A, MorsalI A. Reversible solid-gas and solid-solid transformation of lead(Ⅱ)-phenylalanine coordination polymers[J]. Inorg. Chim. Acta, 2015,435:25-29. doi: 10.1016/j.ica.2015.06.004

    41. [41]

      Liu P R, Yang Z Y, Hong Y, Hou Y L. An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture[J]. Algal Res., 2018,31:173-182. doi: 10.1016/j.algal.2018.02.013

    42. [42]

      Su Z B, Tan L, Yang R Q, Zhang Y, Tao J, Zhang N, Wen F S. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature[J]. Chem. Phys. Lett., 2018,695:153-157. doi: 10.1016/j.cplett.2018.01.034

    43. [43]

      Lu M J, Li L, Shen S Q, Chen D, Han W. Highly efficient removal of Pb2+ by a sandwich structure of metal-organic framework/GO composite with enhanced stability[J]. New J. Chem., 2019,43(2):1032-1037. doi: 10.1039/C8NJ05091K

    44. [44]

      Mao Y, Zhang Z H, Zhan H F, Sun J F, Li Y, Su Z H, Chen Y H, Gao X Y, Huang X, Gu N. Revealing the crystal phases of primary particles formed during the coprecipitation of iron oxides[J]. Chem. Commun., 2022,58(38):5749-5752. doi: 10.1039/D2CC01617F

    45. [45]

      YU C J, WANG M, DONG X Y, LIN Q. Preparation and characterization of calcium alginate@Fe3O4/biochar magnetic microsphere and its adsorption characteristics and mechanism for Co(Ⅱ)[J]. Acta Materiae Compositae Sinica, 2018,35(6):1549-1557.  

    46. [46]

      YU C J, DONG X Y, WANG M, LIN Q. Preparation and characterization of a calcium alginate/biochar microsphere and its adsorption characteristics and mechanisms for Pb(Ⅱ)[J]. Environmental Science, 2018,39(8):3719-3728. doi: 10.13227/j.hjkx.201711274

    47. [47]

      Fang Q L, Chen B L, Lin Y J, Guan Y T. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups[J]. Environ. Sci. Technol., 2014,48(1):279-288. doi: 10.1021/es403711y

    48. [48]

      Li Z, Wang L, Meng J, Liu X M, Xu J M, Wang F, Brookes P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(Ⅱ), Pb(Ⅱ), and As(Ⅲ) in aqueous solution and soil[J]. J. Hazard. Mater., 2018,344:1-11. doi: 10.1016/j.jhazmat.2017.09.036

    49. [49]

      Diao Z H, Du J J, Jiang D, Kong L J, Huo W Y, Liu C M, Wu Q H, Xu X R. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism[J]. Sci. Total Environ., 2018,642:505-515. doi: 10.1016/j.scitotenv.2018.06.093

    50. [50]

      Zhai Q L, Liu R Q, Wang C T, Wen X F, Li X, Sun W. A novel scheme for the utilization of Cu slag flotation tailings in preparing internal electrolysis materials to degrade printing and dyeing wastewater[J]. J. Hazard. Mater., 2022,424127537. doi: 10.1016/j.jhazmat.2021.127537

    51. [51]

      Dong Q X, Dong H R, Li Y J, Xiao J Y, Xiang S X, Hou X Z, Chu D D. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles[J]. J. Hazard. Mater., 2022,431128601. doi: 10.1016/j.jhazmat.2022.128601

    52. [52]

      Liang G W, Hu Z Z, Wang Z W, Yang X, Xie X Y, Zhao J. Effective removal of carbamazepine and diclofenac by CuO/Cu2O/Cu-biochar composite with different adsorption mechanisms[J]. Environ. Sci. Pollut. Res., 2020,27(36):45435-45446. doi: 10.1007/s11356-020-10284-3

    53. [53]

      Cui G Q, Zhang X, Wang H, Li Z Y, Wang W L, Yu Q, Zheng L R, Wang Y D, Zhu J H, Wei M. ZrO2-x modified Cu nanocatalysts with synergistic catalysis towards carbonoxygen bond hydrogenation[J]. Appl. Catal. B-Environ., 2021,280119406. doi: 10.1016/j.apcatb.2020.119406

    54. [54]

      Huang P P, Ye Z F, Xie W M, Chen Q, Li J, Xu Z C, Yao M S. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nzvi) particles[J]. Water Res., 2013,47(12):4050-4058. doi: 10.1016/j.watres.2013.01.054

    55. [55]

      Liu Y, Wang J L. Reduction of nitrate by zero valent iron (zvi)-based materials: A review[J]. Sci. Total Environ., 2019,671:388-403. doi: 10.1016/j.scitotenv.2019.03.317

    56. [56]

      Huang J L, Yin W Z, Li P, Bu H T, Lv S H, Fang Z Q, Yan M J, Wu J H. Nitrate mediated biotic zero valent iron corrosion for enhanced Cd(Ⅱ) removal[J]. Sci. Total Environ., 2020,744140715. doi: 10.1016/j.scitotenv.2020.140715

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    20. [20]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

Metrics
  • PDF Downloads(1)
  • Abstract views(530)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return