Citation: Xiao-Yan ZHANG, Piao CHEN, Ying-Xin ZHAO, Xiong-Jian LI, Shui-Jin YANG, Yun YANG. Construction and photocatalytic properties of MOF-808/Bi2MoO6 composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 805-814. doi: 10.11862/CJIC.2023.051 shu

Construction and photocatalytic properties of MOF-808/Bi2MoO6 composites

Figures(11)

  • Zirconium-based metal-organic framework and bismuth molybdate composite (MOF-808/Bi2MoO6) was prepared by a simple two-step hydrothermal method. The phase composition, microstructure, optical properties, and photogenerated charge recombination efficiency of the materials were analyzed by X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV visible diffuse reflectance spectroscopy, N2 adsorption-desorption testing, and electrochemical testing. Compared with pure Bi2MoO6 and MOF-808, the 0.5%-MOF-808/Bi2MoO6 composite exhibited higher photocatalytic activity, and the degradation rate of the antibiotic ciprofloxacin (CIP) reached 89.7% under visible light irradiation for 120 min. Through radical trapping experiments, it was proved that •O2- was the main active species, based on which we proposed a possible photocatalytic degradation mechanism.
  • 加载中
    1. [1]

      Matt H, Andrew T, Barrie W. Antibiotics: Past, present and future[J]. Curr. Opin. Microbiol., 2019,51:72-80. doi: 10.1016/j.mib.2019.10.008

    2. [2]

      Julie A P, Erin L W, Gerard D W. The antibiotic resistome: What's new?[J]. Curr. Opin. Microbiol., 2014,21:45-50. doi: 10.1016/j.mib.2014.09.002

    3. [3]

      Qiao M, Ying G G, Andrew C S, Zhu Y G. Review of antibiotic resistance in China and its environment[J]. Environ. Int., 2018,110:160-172. doi: 10.1016/j.envint.2017.10.016

    4. [4]

      Gothwal R, Shashidhar T. Antibiotic pollution in the environment: A review[J]. Clean-Soil Air Water, 2015,43(4):479-489. doi: 10.1002/clen.201300989

    5. [5]

      Pang X, Skillen N, Gunaratne N, Rooney D W, Robertson P K J. Removal of phthalates from aqueous solution by semiconductor photocatalysis: A review[J]. J. Hazard. Mater., 2021,402(15)123461.

    6. [6]

      Mahmoodi M N. Binary catalyst system dye degradation using photocatalysis[J]. Fiber. Polym., 2014,15(2):273-280. doi: 10.1007/s12221-014-0273-1

    7. [7]

      Anwer H, Mahmood A, Lee J, Kim K H, Park J W, Yip A C K. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges[J]. Nano Res., 2019,12(5):955-972. doi: 10.1007/s12274-019-2287-0

    8. [8]

      Cheng L L, Huang D Y, Zhang Y, Wu Y. Preparation and piezoelectric catalytic performance of HT-Bi2MoO6 microspheres for dye degradation[J]. Adv. Powder Technol., 2021,32(9):3346-3354. doi: 10.1016/j.apt.2021.07.021

    9. [9]

      Chankhanittha T, Nanan S. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction[J]. J. Colloid Interface. Sci., 2021,582:412-427. doi: 10.1016/j.jcis.2020.08.061

    10. [10]

      Wang Y P, Yang H, Sun X F, Zhang H M, Xian T. Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation[J]. Mater. Res. Bull., 2020,124110754. doi: 10.1016/j.materresbull.2019.110754

    11. [11]

      Fernandes A, Makoś P, Wang Z, Boczkaj G. Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents[J]. Chem. Eng. J., 2020,391123488. doi: 10.1016/j.cej.2019.123488

    12. [12]

      Guo Q, Zhou C Y, Ma Z B, Yang X M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Adv. Mater., 2019,31(50)1901997. doi: 10.1002/adma.201901997

    13. [13]

      Wu X, Ng Y H, Saputera W H, Wen X, Du Y, Dou S X, Amal R, Scott J. The Dependence of Bi2MoO6 photocatalytic water oxidation capability on crystal facet engineering[J]. ChemPhotoChem, 2019,3(12):1246-1253. doi: 10.1002/cptc.201900113

    14. [14]

      Yu H B, Jiang L B, Wang H, Huang B B, Yuan X Z, Huang J H, Zhang J, Zeng G G. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review[J]. Small, 2019,15(23)1901008.

    15. [15]

      Yang X L, Xu X, Wang J, Chen T, Wang S Y, Ding X, Chen H. Insights into the surface/interface modifications of Bi2MoO6: Feasible strategies and photocatalytic applications[J]. Sol. RRL, 2020,5(2)2000442.

    16. [16]

      Stelo F, Kublik N, Ullah S, Wender H. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants[J]. J. Alloy. Compd., 2020,829154591. doi: 10.1016/j.jallcom.2020.154591

    17. [17]

      ZOU C T, ZHANG Z, LIAO W J, YANG S J. Enhancement of photocatalytic performance of layered Bi2MoO6 by ferroelectric polarization[J]. Chinese J. Inorg. Chem., 2020,36(9):1717-1727.  

    18. [18]

      Bazargani-Gilani B, Aliakbarlu J, Tajik H. Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage[J]. Innovative Food Sci. Emerg. Technol., 2015,29:280-287. doi: 10.1016/j.ifset.2015.04.007

    19. [19]

      Javid A, Kumar M, Ashraf M, Lee J H, Han J G. Photocatalytic antibacterial study of N-doped TiO2 thin films synthesized by ICP assisted plasma sputtering method[J]. Physica E, 2019,106:187-193. doi: 10.1016/j.physe.2018.10.034

    20. [20]

      Kaur H, Kumar S, Verma N K, Singh P. Role of pH on the photocatalytic activity of TiO2 tailored by W/T mole ratio[J]. J. Mater. Sci.: Mater. Electron., 2018,29(18):16120-16135. doi: 10.1007/s10854-018-9701-0

    21. [21]

      Chen X F, Hu H Q, Feng Y, Peng D Y, Li B, Fu H, Guo B J, Lei X, Yu K. MoS2 compounded bidirectionally with TiO2 for hydrogen evolution reaction with enhanced humidity sensing performance[J]. Mater. Sci. Semicond. Process, 2018,82:75-81. doi: 10.1016/j.mssp.2018.03.034

    22. [22]

      Bi X J, Yu S R, Liu E Y, Liu L, Zhang K, Zang J, Zhao Y. Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity[J]. Colloids Surf. A, 2020,603125193. doi: 10.1016/j.colsurfa.2020.125193

    23. [23]

      Zhu M, Zhang L S, Liu S S, Wang D K, Qin Y C, Chen Y, Dai W L, Wang Y H, X Q J, Zou J P. Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode[J]. Chin. Chem. Lett., 2020,31(7):1961-1965. doi: 10.1016/j.cclet.2020.01.017

    24. [24]

      Guo X, Duan J, Li C, Zhang Z, Wang W. Fabrication of highly stabilized Zr doped g-C3N4/Nb2O5 heterojunction and its enhanced photocatalytic performance for pollutants degradation under visible light irradiation[J]. Colloids Surf. A, 2022,649129474. doi: 10.1016/j.colsurfa.2022.129474

    25. [25]

      Yin W Q, Cao X J, Wang B, Jiang Q J, Chen Z G, Xia J X. In-situ synthesis of MoS2/BiOBr material via mechanical ball milling for boosted photocatalytic degradation pollutants performance[J]. ChemistrySelect, 2021,6(5):928-936. doi: 10.1002/slct.202004316

    26. [26]

      Zou J P, Wu D D, Luo J M, Xing Q J, Luo X B, Dong W H, Luo S L, Du H M, Suib S. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2[J]. ACS Catal., 2016,6:6861-6867. doi: 10.1021/acscatal.6b01729

    27. [27]

      Zhang L S, Jiang X H, Zhong Z A, Tian L, Sun Q, Cui Y T, Lu X, Zou J P, Luo S L. Carbon nitride supported high-loading Fe single- atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angew. Chem. Int. Ed., 2021,60(40):21751-21755. doi: 10.1002/anie.202109488

    28. [28]

      Wang S B, Meng C Z, Bai Y X, Wang Y D, Liu P J, Pan L, Zhang L, Yin Z, Tang N. Synergy promotion of elemental doping and oxygen vacancies in Fe2O3 nanorods for photoelectrochemical water splitting[J]. ACS Appl. Nano Mater., 2022,5(5):6781-6791. doi: 10.1021/acsanm.2c00777

    29. [29]

      Shao W, Wang H, Zhang X D. Elemental doping for optimizing photocatalysis in semiconductors[J]. Dalton Trans., 2018,47(36):12642-12646. doi: 10.1039/C8DT02613K

    30. [30]

      Yap P L, Kabiri S, Auyoong Y L, Tran D N H, Losic D. Tuning the multifunctional surface chemistry of reduced graphene oxide via combined elemental doping and chemical modifications[J]. ACS Omega, 2019,4(22):19787-19798. doi: 10.1021/acsomega.9b02642

    31. [31]

      Jiang X H, Zhang L S, Liu H Y, Wu D S, Wu F Y, Tian L, Liu L L, Zou J P, Luo S L, Chen B B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., 2020,132(51):23112-23116.

    32. [32]

      Kawai E, Matsudaira T, Ogawa T, Kawashima N, Fisher C A J, Yokoe D, Kato T, Kitaoka S. Controlling the nanostructure and thermal properties of double-perovskite rare-earth tantalates by elemental doping[J]. Scr. Mater., 2022,210114408. doi: 10.1016/j.scriptamat.2021.114408

    33. [33]

      Khosroshahi N, Goudarzi M D, Safarifard V. Fabrication of a novel heteroepitaxial structure from an MOF-on-MOF architecture as a photocatalyst for highly efficient Cr(Ⅵ) reduction[J]. New J. Chem., 2022,46:3106-3115. doi: 10.1039/D1NJ05440F

    34. [34]

      Cai H, Zhou J, Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chem. Soc. Rev., 2014,43:5415-5418. doi: 10.1039/C4CS90059F

    35. [35]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149)1230444. doi: 10.1126/science.1230444

    36. [36]

      HE Y P, JIN X Y, LI W Z, YANG S J, LÜ B L. Synthesis and photo-catalytic properties of Bi2WO6/UiO-66 composite[J]. Chinese J. Inorg. Chem., 2019,35(6):996-1004.  

    37. [37]

      Liu H, Xu C Y, Li D D, Jiang H L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites[J]. Angew. Chem. Int. Ed., 2018,57(19):5477-5481. doi: 10.1002/anie.201800144

    38. [38]

      Li Z Q, Yang J C, Sui K W, Yin N. Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J]. Mater. Lett., 2015,160:412-414. doi: 10.1016/j.matlet.2015.08.004

    39. [39]

      Ly H G T, Fu G X, Kondinski A, Bueken B, Vos D D, Parac-Vogt T N. Superactivity of MOF-808 toward peptide bond hydrolysis[J]. J. Am. Chem. Soc., 2018,140(20):6325-6335. doi: 10.1021/jacs.8b01902

    40. [40]

      Luo H B, Ren Q, Wang P, Zhang J, Wang L F, Ren X M. High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808[J]. ACS Appl. Mater. Interfaces, 2019,11(9):9164-9171. doi: 10.1021/acsami.9b01075

    41. [41]

      Karmakar S, Barman S, Rahimi F A, Maji T K. Covalent grafting of molecular photosensitizer and catalyst on MOF-808: Effect of pore confinement toward visible light-driven CO2 reduction in water[J]. Energy Environ. Sci., 2021,14(4):2429-2440. doi: 10.1039/D0EE03643A

    42. [42]

      Zhang Z J, Chen X Y. Sb2MoO6, Bi2MoO6, Sb2WO6, and Bi2WO6 flake-like crystals: Generalized hydrothermal synthesis and the applications of Bi2WO6 and Bi2WO6 as red phosphors doped with Eu3+ ions[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2016,209:10-16. doi: 10.1016/j.mseb.2015.12.003

    43. [43]

      Wang F W, Xue R X, Ma Y J, Ge Y Z, Wang Z J, Qiao X W, Zhou P A. Study on the performance of a MOF-808-based photocatalyst prepared by a microwave-assisted method for the degradation of antibiotics[J]. RSC Adv., 2021,11:32955-32964. doi: 10.1039/D1RA05058C

    44. [44]

      Xu J, Liu J, Li Z, Wang X B, Wang Z. Synthesis, structure and properties of Pd@MOF-808[J]. J. Mater. Sci., 2019,54(19):12911-12924. doi: 10.1007/s10853-019-03786-0

    45. [45]

      ZHANG Z, ZOU C T, YANG Z Y, YANG S J. One-step preparation and photocatalytic activity of Bi2MoO6/CoMoO4 embroidery ball structure[J]. Chinese J. Inorg. Chem., 2020,36(8):1446-1456.  

    46. [46]

      Zhao Z W, Zhang W D, Sun Y J, Yu J Y, Zhang Y X, Wang H, Dong F, Wu Z B. Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis[J]. J. Phys. Chem. C, 2022,120(22):11889-11898.

    47. [47]

      Ge W, Liu K, Yang P Z, Deng S K, Shen L X. Synthesis and upconversion luminescent properties of Bi2MoO6∶20%Yb3+, 2%Er3+ hollow microsphere with different W6+ ions doping[J]. J. Solid State Chem., 2021,297122064. doi: 10.1016/j.jssc.2021.122064

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    3. [3]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

Metrics
  • PDF Downloads(12)
  • Abstract views(1091)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return