Citation: Wen-Wu ZHOU, Shi-Yu HAN, Zhi-Ping CHEN, Ying-Feng DUAN, Jie KANG, Fei FAN, Chang TIAN, Xin-Meng ZHANG. Hierarchical TS-1 zeolite loaded with NiMo catalysts: Preparation and performance in hydrodesulfurization[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 891-905. doi: 10.11862/CJIC.2023.049 shu

Hierarchical TS-1 zeolite loaded with NiMo catalysts: Preparation and performance in hydrodesulfurization

  • Corresponding author: Zhi-Ping CHEN, cupczp@163.com
  • Received Date: 5 December 2022
    Revised Date: 23 March 2023

Figures(9)

  • The sole micropores strictly restrict the wide utilization of TS-1 zeolite in the catalytic fields, especially in the catalytic conversion of compounds with large molecular sizes. Here, we report a feasible and economical method to overcome this drawback. In this work, the hierarchical TS-1 zeolite was constructed via post-acid treatment, postalkali etching, and a combination of postacid treatment and alkali etching methods, after which, the corresponding NiMo-supported catalysts were prepared via the incipient wetness impregnation method. Then, the aforementioned materials were fully characterized using X - ray diffraction (XRD), N2 adsorption - desorption, pyridine adsorbed Fourier transform infrared spectroscopy (Py - FTIR), H2 temperature programmed reduction (H2 - TPR), X-ray photoelectron spectroscopy (XPS), and high-resolution transition electron microscope (HR-TEM) to unravel the changes in the physicochemical properties caused by the post treatments. Finally, the hydrodesulfurization of dibenzothiophene (DBT) was used as a probe to assess the effects of the post-treatments on the catalytic performance of the hierarchical NiMo/TS-1 catalysts. The results showed that the MFI topology of TS-1 zeolite remained undamaged significantly and the serial hierarchical TS-1 zeolites exhibited higher specific surface areas and mesopore structures. Moreover, appropriate amounts of Br?nsted acid sites were formed at the surface of the serial hierarchical TS-1 zeolites. The interaction between the active metals and the support materials was also modulated by the posttreatment of TS-1 zeolite, which resulted in better dispersion of Ni promoted MoS2 slabs with a higher proportion of NiMoS active phase, further leading to the enhanced catalytic activity and direct desulfurization pathway selectivity of the corresponding serial hierarchical NiMo/TS-1 catalysts. Among all the prepared catalysts, the catalytic activity was enhanced by approximately 1.2 times over catalyst NiMo/AT-TS-1 obtained by post-acid treatment compared to that over catalyst NiMo/TS-1 without treatment and on which the selectivity of the DDS pathway was 22% higher compared to that over catalyst NiMo/TS-1.
  • 加载中
    1. [1]

      Wang C H, Li X, Liu Y Y, Wang A J, Sheng Q, Zhang C X. Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues[J]. J. Catal., 2022,407:333-341. doi: 10.1016/j.jcat.2022.02.011

    2. [2]

      Zhang L, Dai Q, Fu W Q, Tang T D, Dong P X, He M Y, Chen Q. CoMo catalyst on zeolite TS-1 nanorod assemblies with high activity in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. J. Catal., 2018,359:130-142. doi: 10.1016/j.jcat.2017.12.015

    3. [3]

      Wang X L, Xiao C K, Zheng P, Zhao Z, Alabsi M H, Shi Y, Gao D, Duan A J, Huang K W, Xu C M. Dendritic micro-mesoporous composites with center-radial pores assembled by TS-1 nanocrystals to enhance hydrodesulfurization activity of dibenzothiophene and 4, 6-dimethyldibenzothiophene[J]. J. Catal., 2020,384:136-146. doi: 10.1016/j.jcat.2020.02.013

    4. [4]

      LIU W Q, ZHOU H, LEI W N, SHANG T M, ZHANG Q, SUN G D. Effect of additives on the physicochemical properties and hydrodesulfurization performance of WNx/TiO2-γ-Al2O3 catalyst[J]. Acta Chim. Sin., 2011,69(14):1622-1626.  

    5. [5]

      Wang X L, Xiao C K, Mei J L, Alabsi M H, Shi Y, Zhao Z, Duan A J, Huang K W, Xu C M. Structural screening and design of dendritic micro-mesoporous composites for efficient hydrodesulfurization of dibenzothiophene and 4, 6-DMDBT[J]. ACS Appl. Mater. Interfaces, 2020,1236:40404-40414.

    6. [6]

      Xiao C K, Zheng P, Shi Y, Di H, Mei J L, Wang G, Duan A J, Jiang G Y, Liu J. Phosphoric acid modified Al-TUD-1 material to enhance hydrodesulfurization activities of dibenzothiophene and FCC diesel[J]. Catal. Today, 2021,374:154-161. doi: 10.1016/j.cattod.2020.12.026

    7. [7]

      Liu Z W, Han W, Hu D W, Sun S L, Hu A P, Wang Z, Jia Y Z, Zhao X Q, Yang Q H. Effects of Ni-Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts[J]. J. Catal., 2020,387:62-72. doi: 10.1016/j.jcat.2020.04.008

    8. [8]

      Yu X H, Dong Y Z, Jia H N, Li X, Wang Z H, Liu Y Y, Gao R Y, Yao S D. A functionalized porous carbon from super absorbent polymer serving as the support of NiMo hydrodesulfurization catalyst[J]. J. Mater. Sci., 2022,576:4180-4196.

    9. [9]

      Zhang G, Yang F, Xu Z S, Che S, Sun S Y, Xu C, Ma G, Yang W, Wei Q, Li Y F. Electronic structure regulation of CoMoS catalysts by N, P co-doped carbon modification for effective hydrodesulfurization[J]. Fuel, 2022,322124160. doi: 10.1016/j.fuel.2022.124160

    10. [10]

      Fan F, Chen Z P, Zhou A N, Yang Z Y, Zhang Y T, He X X, Kang J, Zhou W W. Theoretical investigation on the inert pair effect of Ga on both the Ga-Ni-Mo-S nanocluster and the direct desulfurization of 4, 6-dimethyldibenzothiophene[J]. Fuel, 2023,333126351. doi: 10.1016/j.fuel.2022.126351

    11. [11]

      LI G F. Effect of Zr-modified ASA molecular sieve catalyst on the performance of coal tar hydrodesulfurization and denitrogenation[J]. Industrial Catalysis, 2020,28(9):34-36.  

    12. [12]

      Gonzalez-lldelfonso M, Escobar J, Gordillo-cruz E, Delángel P, Suarez-toriello V A, Delosreyes J A. RuS2-modified NiW/Al2O3 catalysts for refractory 4, 6-dimethyl-dibenzothiophene hydrodesulfurization[J]. Mater. Chem. Phys., 2022,278125568. doi: 10.1016/j.matchemphys.2021.125568

    13. [13]

      YANG X D, WANG X M, GAO S B, WANG A J. Study on the performance of Pd/ZSM-5/MCM-41 catalyst for hydrodesulfurization[J]. Acta Chim. Sin., 2017,75(5):479-484.  

    14. [14]

      Mei J L, Shi Y, Xiao C K, Wang A C, Duan A J, Wang X L. Hierarchically porous Beta/SBA-16 with different silica-alumina ratios and the hydrodesulfurization performances of DBT and 4, 6-DMDBT[J]. Pet. Sci., 2022,191:375-386.

    15. [15]

      Cui T Y, Rajendran A, Fan H X, Feng J, Li W Y. Review on hydrodesulfurization over zeolite-based catalysts[J]. Ind. Eng. Chem. Res., 2021,608:3295-3323.

    16. [16]

      Ghosh S, Courtheoux L, Brunet S, Lacroix-Desmmazes P, Pradel A, Giraro E, Uzio D. Hybrid CoMoS-polyaniline nanowires catalysts for hydrodesulfurisation applications[J]. Appl. Catal. A-Gen., 2021,623118264. doi: 10.1016/j.apcata.2021.118264

    17. [17]

      LIU S Z, LI M F, ZHANG L, YANG P, LI D D, MAO Y C. Effect of multistage pore molecular sieve on the performance of 4, 6-dimethyldibenzothiophene hydrodesulfurization reaction[J]. Petroleum Processing and Petrochemicals, 2020,51(4):1-6. doi: 10.3969/j.issn.1005-2399.2020.04.001

    18. [18]

      Zhang M, Ren S Y, Guo Q X, Shen B J. Synthesis of hierarchically porous zeolite TS-1 with small crystal size and its performance of 1-hexene epoxidation reaction[J]. Microporous Mesoporous Mater., 2021,326111395. doi: 10.1016/j.micromeso.2021.111395

    19. [19]

      Ganiyu S A, Alhooshani K, Ali S A. Single-pot synthesis of Ti-SBA-15-NiMo hydrodesulfurization catalysts: Role of calcination temperature on dispersion and activity[J]. Appl. Catal. B-Environ., 2017,203:428-441. doi: 10.1016/j.apcatb.2016.10.052

    20. [20]

      Silva-rodrigo R, Calderon-salas C, Melo-banda J A, Dominguez J M, Vzaquez-rodriguez A. Synthesis, characterization and comparison of catalytic properties of NiMo- and NiW/Ti-MCM-41 catalysts for HDS of thiophene and HVGO[J]. Catal. Today, 2004,981:123-129.

    21. [21]

      Ramirez J, Cedeno L, Busca G. The role of titania support in Mo-based hydrodesulfurization catalysts[J]. J. Catal., 1999,1841:59-67.

    22. [22]

      Ramirez J, Macias S G, Cedeno L, Gutierrez-alejandre A, Castillo P. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: Analysis of past and new evidences[J]. Catal. Today, 2004,981:19-30.

    23. [23]

      Zhao Z Y, Cheng D G, Chen F Q, Zhan X L. Hierarchical porous TS-1/Pd/CdS catalysts for enhanced photocatalytic hydrogen evolution[J]. Int. J. Hydrog. Energy, 2020,4558:33532-33542.

    24. [24]

      Yang G J, Han J, LIU Y, Qiu Z Y, Chen X X. The synthetic strategies of hierarchical TS-1 zeolites for the oxidative desulfurization reactions[J]. Chin. J. Chem. Eng., 2020,289:2227-2234.

    25. [25]

      Yuan J C, Song Z N, Lin D, Feng X, Tuo Y X, Zhou X, Yan H, Jin X, Liu Y B, Chen X, Chen D, Yang C H. Mesoporogen-free strategy to construct hierarchical TS-1 in a highly concentrated system for gas-phase propene epoxidation with H2 and O2[J]. ACS Appl. Mater. Interfaces, 2021,1322:26134-26142.

    26. [26]

      Bai R S, Song Y, Bai R B, Yu J H. Creation of hierarchical titanosilicate TS-1 zeolites[J]. Adv. Mater. Interfaces, 2021,842001095.

    27. [27]

      Zhang J N, Shi H Z, Song Y, Xu W J, Meng X Y, Li J Y. High-efficiency synthesis of enhanced-titanium and anatase-free TS-1 zeolite by using a crystallization modifier[J]. Inorg. Chem. Front., 2021,812:3077-3084.

    28. [28]

      ZHANG Y T, DANG H, ZHANG N N, CHEN S L. Hierarchical β zeolite by surfactant-templating method: Preparation and catalytic performance in tetralin hydrocracking to benzene, toluene, and xylene[J]. Chinese J. Inorg. Chem., 2022,38(7):1350-1360.  

    29. [29]

      Tsai S T, Chao P Y, Tsai T C, Wang I, Liu X X, Guo X W. Effects of pore structure of post-treated TS-1 on phenol hydroxylation[J]. Catal. Today, 2009,1481:174-178.

    30. [30]

      Wang Y Q, Li H Y, Liu W, Lin Y J, Han X P, Wang Z. Effect of TS-1 treatment by mixed alkaline on propylene epoxidation[J]. Trans. Tianjin Univ., 2018,241:25-31.

    31. [31]

      Xu W J, Li L, Zhang T J, Yu J H. Tailoring porosity and titanium species of TS-1 zeolites via organic base-assisted sequential post-treatment[J]. Chem. Res. Chin. Univ., 2022,381:50-57.

    32. [32]

      Chao P Y, Tsai S T, Tsai T C, Mao J B, Guo X W. Phenol hydroxylation over alkaline treated TS-1 catalysts[J]. Top Catal., 2009,521:185-192.

    33. [33]

      Silvestre-Albero A, Grau-Atienza A, Serrano E, Garcia-Martinez J, Silvestre-Albero J. Desilication of TS-1 zeolite for the oxidation of bulky molecules[J]. Catal. Commun., 2014,44:35-39. doi: 10.1016/j.catcom.2013.08.004

    34. [34]

      Xiong G, Jia Q Y, Cao Y Y, Liu L P, Guo Z D. The effect of acid treatment on the active sites and reaction intermediates of the low-cost TS-1 in propylene epoxidation[J]. RSC Adv., 2017,739:24046-24054.

    35. [35]

      ZHANG H J, XIE W, LIU Y M, WU P. Preparation of low-cost TS-1 molecular sieve and its phenol hydroxylation properties[J]. Industrial Catalysis, 2007(5):60-63.  

    36. [36]

      REN X X, SONG W C, QIU Y, LIU G F, ZANG J Z, YU H B. Preparation of low-cost multi-stage pore TS-1 and its oxidative desulfurization performance[J]. Inorganic Chemicals Industry, 2019,51(2):79-83.  

    37. [37]

      Zhou W W, Yang L, Liu L, Chen Z P, Zhou A N, Zhang Y T, He X F, Shi F X, Zhao Z G. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4, 6-dimethyldibenzothiop-hene hydrodesulfurization[J]. Appl. Catal. B-Environ., 2020,268118428. doi: 10.1016/j.apcatb.2019.118428

    38. [38]

      Zhou W W, Zhou Y S, Wei Q, Ding S J, Jiang S J, Zhang Q, Liu M F. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT)[J]. Chem. Eng. J., 2017,330:605-615. doi: 10.1016/j.cej.2017.08.005

    39. [39]

      Zhou W W, Zhou A N, Zhang Y T, Zhang C C, Chen Z P, Liu L, Zhou Y S, Wei Q, Tao X J. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts[J]. J. Catal., 2019,374:345-359. doi: 10.1016/j.jcat.2019.05.013

    40. [40]

      Zhou W W, Wei Q, Zhou Y S, Liu M F, Ding S J, Yang Q. Hydrodesulfurization of 4, 6-dimethyldibenzothio-phene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Appl. Catal. B-Environ., 2018,238:212-224. doi: 10.1016/j.apcatb.2018.07.042

    41. [41]

      Olivas A, Zepeda T A. Impact of Al and Ti ions on the dispersion and performance of supported NiMo(W)/SBA-15 catalysts in the HDS and HYD reactions[J]. Catal. Today, 2009,1431:120-125.

    42. [42]

      Gao Y, Han W, Long X Y, Nie H, Li D D. Preparation of hydrodesulfurization catalysts using MoS3 nanoparticles as a precursor[J]. Appl. Catal. B-Environ., 2018,224:330-340. doi: 10.1016/j.apcatb.2017.10.046

    43. [43]

      Nikulshin P A, Minaev P P, Mozhaev A V, Maslakov K I, Kulikova M S, Pimerzin A A. Investigation of co-effect of 12-tungstophosphoric heteropolyacid, nickel citrate and carbon-coated alumina in preparation of NiW catalysts for HDS, HYD and HDN reactions[J]. Appl. Catal. B-Environ., 2015,176-177:374-384. doi: 10.1016/j.apcatb.2015.04.011

    44. [44]

      Bi M L, Song S J, Li Z X, Zhang B X, Zhao L, Guo K X, Li J H, Chen L D, Zhao Q, Cheng W G, Wang X S, Guo X W. In situ encapsulated molybdovanaphosphodic acid on modified nanosized TS-1 zeolite catalyst for deep oxidative desulfurization[J]. Microporous Mesoporous Mat., 2022,335111799. doi: 10.1016/j.micromeso.2022.111799

    45. [45]

      Du Q, Guo Y P, Duan H A, Li H, Chen Y J, Liu H Z. Synthesis of hierarchical TS-1 zeolite via a novel three-step crystallization method and its excellent catalytic performance in oxidative desulfurization[J]. Fuel, 2017,188:232-238.

    46. [46]

      Wang Y Y, Li L, Bai R S, Gao S Q, Feng Z C, Zhang Q, Yu J H. Amino acid-assisted synthesis of TS-1 zeolites containing highly catalytically active TiO6 species[J]. Chin. J. Catal., 2021,4212:2189-2196.

    47. [47]

      Shakeri M. Efficient synthesis of titaniosilicalite-1 zeolite nanoparticles under solvent-free conditions for the oxidation of dibenzothiophene: Impact of silica precursor[J]. ChemistrySelect, 2019,425:7566-7571.

    48. [48]

      YANG Y C, LI H, HE D H, WANG Y, XU C H, QIU F L, YE Z X. Study on the catalytic performance of TS-1 molecular sieve synthesized by microwave[J]. Acta Chim. Sin., 2006,14:1411-1415.  

    49. [49]

      Liu H, Lu G Z, Guo Y L, Guo Y, Wang J S. Effect of pretreatment on properties of TS-1/diatomite catalyst for hydroxylation of phenol by H2O2 in fixed-bed reactor[J]. Catal. Today, 2004,93-95:353-357.

    50. [50]

      Zaarour M, Dong B, Naydenova I, Rrtoux R, Mintova S. Progress in zeolite synthesis promotes advanced applications[J]. Microporous Mesoporous Mat., 2014,189:11-21.

    51. [51]

      Wang J G, Xu L, Zhang K, Peng H G, Wu H H, Jiang J G, Liu Y M, Wu P. Multilayer structured MFI-type titanosilicate: Synthesis and catalytic properties in selective epoxidation of bulky molecules[J]. J. Catal., 2012,288:16-23.

    52. [52]

      Zhang W Z, Froba M, Wang J L, Tanev P T, Wong J, Pnnavaial T J. Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I-, S+X-I+) and neutral (S°I°) assembly pathways: A comparison of physical properties and catalytic activity for peroxide oxidations[J]. J. Am. Chem. Soc., 1996,11838:9164-9171.

    53. [53]

      Hou G Q, Fu T J, Li X, Ma Q, Li Z. Creation of silanol nests on HZSM-5 catalyst to boost the alkylation of toluene with methanol for PX synthesis[J]. Appl. Catal. A-Gen., 2022,642118713.

    54. [54]

      Yu Q Y, Zhang L, Guo R, Sun J, Fu W Q, Tang T, Tang T D. Catalytic performance of CoMo catalysts supported on mesoporous ZSM-5 zeolite-alumina composites in the hydrodesulfurization of 4, 6-dimethyldibenzothio-phene[J]. Fuel Process. Technol., 2017,159:76-87.

    55. [55]

      Hu H C, Wachs I E, Bare S R. Surface structures of supported molybdenum oxide catalysts: Characterization by Raman and MoL3-edge xanes[J]. J. Phys. Chem. C, 1995,9927:10897-10910.

    56. [56]

      Haandel L V, Bremmer M, Kooyman P J, Veen J, Hensen E J M. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1-x)S2/Al2O3 catalysts[J]. ACS Catal., 2015,512:7276-7287.

    57. [57]

      Wu H D, Duan A J, Zhao Z, Li T S, Prins R, Zhou X F. Synthesis of NiMo hydrodesulfurization catalyst supported on a composite of nano-sized ZSM-5 zeolite enwrapped with mesoporous KIT-6 material and its high isomerization selectivity[J]. J. Catal., 2014,317:303-317.

    58. [58]

      Wang B, Chen Z T, Jiang T, Yu J H, Yang H X, Duan A J, Xu C M. Comparison of the intraparticle diffusion of DBT and 4, 6-DMDBT in HDS over different mesostructured silica-based catalysts[J]. Fuel, 2022,324124516.

    59. [59]

      Yu K, Kong W M, Zhao Z, Duan A J, Kong L, Wang X L. Hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size[J]. J. Catal., 2022,410:128-143.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(13)
  • Abstract views(954)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return