Citation: Fei-Xiang WANG, Yong SHEN, Hong PAN, Li-Hui XU. Preparation and wave-absorbing properties of flower-like Zn-MOF-derived carbon@MoS2 composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 830-840. doi: 10.11862/CJIC.2023.046 shu

Preparation and wave-absorbing properties of flower-like Zn-MOF-derived carbon@MoS2 composites

  • Corresponding author: Yong SHEN, shenyong@sues.edu.cn
  • Received Date: 24 October 2022
    Revised Date: 15 March 2023

Figures(6)

  • The polyhedral structure of Zn-MOF (MOF: metal-organic framework) was synthesized by the coordination of zinc nitrate hexahydrate and 2-methylimidazole. The Zn-MOF was calcined at high temperatures in a nitrogen atmosphere to prepare nanoporous carbon materials. In the process of preparation of flower-like MoS2 by solvothermal reaction, the Zn-MOF-derived nanoporous carbon was introduced and combined with flower-like MoS2 through self-assembly to prepare flower-like Zn-MOF-derived carbon@MoS2 composite absorbing material with regular and ordered structure. A series of characterization and performance tests were carried out to study the physical properties and absorbing properties of the composites. The particle size of polyhedral Zn-MOF-derived nanoporous carbon was 80 nm and encased in 1 μm flower-like MoS2. With the increase of the amount of Zn-MOF-derived carbon, the electromagnetic wave absorption performance of the flower-like Zn-MOF-derived carbon@MoS2 composites firstly increased and then decreased. Based on the high porosity and large specific surface area of Zn-MOF-derived porous carbon and the flower-like structure of MoS2, the electromagnetic wave was reflected and scattered many times, and there was a strong polarization effect, good impedance matching, and synergistic effect between MoS2 and Zn-MOF-derived carbon. When the additional amount (mass fraction) of flower-like Zn-MOF-derived carbon@MoS2 in paraffin was 25%, the frequency was 9.28 GHz, the matching thickness was 3 mm, and the effective absorption bandwidth was 3.04 GHz, the optimal reflection loss reached -49.68 dB, showing excellent electromagnetic wave absorption performance.
  • 加载中
    1. [1]

      Fang J Y, Li P, Liu Y D, Min Y G. Cobalt magnetic particles and carbon composite microtubes as high-performance electromagnetic wave absorbers[J]. J. Mater. Chem. C, 2021,9(7):2474-2482. doi: 10.1039/D0TC05409G

    2. [2]

      Kim T, Lee J, Lee K, Park B, Jung B M, Lee S B. Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption[J]. Chem. Eng. J., 2019,361:1182-1189. doi: 10.1016/j.cej.2018.12.172

    3. [3]

      WANG F, JI G B. Progress in structural regulation and electromagnetic properties of perovskite oxides[J]. Chinese J. Inorg. Chem., 2021,37(8):1353-1363.  

    4. [4]

      Huang L, Li J J, Wang Z J, Li Y B, He X D, Yuan Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane[J]. Carbon, 2019,143:507-516. doi: 10.1016/j.carbon.2018.11.042

    5. [5]

      Chen X L, Shi T, Wu G L, Lu Y. Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance[J]. J. Colloid Interface Sci., 2020,572:227-235. doi: 10.1016/j.jcis.2020.03.089

    6. [6]

      Mei H, Zhao X, Zhou S X, Han D Y, Xiao S S, Cheng L F. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption[J]. Chem. Eng. J., 2019,372:940-945. doi: 10.1016/j.cej.2019.05.011

    7. [7]

      Wu Z C, Tian K, Huang T, Hu W, Xie F F, Wang J J, Su M X, Li L. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Appl. Mater. Interfaces, 2018,10(13):11108-11115. doi: 10.1021/acsami.7b17264

    8. [8]

      Zhao B, Deng J S, Liang L Y, Zuo C Y X, Bai Z Y, Guo X Q, Zhang R. Lightweight porous Co3O4 and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties[J]. CrystEngComm, 2017,19(41):6095-6106. doi: 10.1039/C7CE01464C

    9. [9]

      Zhao B, Guo X Q, Zhou Y Y, Su T T, Ma C, Zhang R. Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide‑band microwave absorbers[J]. CrystEngComm, 2017,19(16):2178-2186. doi: 10.1039/C7CE00235A

    10. [10]

      Han B H, Chu W L, Han X J, Xu P, Liu D W, Cui L R, Wang Y H, Zhao H H, Du Y C. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials[J]. Carbon, 2020,168:404-414. doi: 10.1016/j.carbon.2020.07.005

    11. [11]

      Cui L R, Wang Y H, Han X J, Xu P, Wang F Y, Liu D W, Zhao H H, Du Y C. Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution[J]. Carbon, 2021,174:673-682. doi: 10.1016/j.carbon.2020.10.070

    12. [12]

      Cheng R R, Wang Y, Di X C, Lu Z, Wang P, Ma M L, Ye J R. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption[J]. J. Colloid Interface Sci., 2022,609:224-234. doi: 10.1016/j.jcis.2021.11.197

    13. [13]

      Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009,38(5):1450-1459. doi: 10.1039/b807080f

    14. [14]

      Cai Z X, Wang Z L, Kim J, Yamauchi Y. Hollow functional materials derived from metal-organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Adv. Mater., 2019,31(11)1804903. doi: 10.1002/adma.201804903

    15. [15]

      Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009,38(5):1477-1504. doi: 10.1039/b802426j

    16. [16]

      Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003,300(5622):1127-1129. doi: 10.1126/science.1083440

    17. [17]

      Zhang X M, Ji G B, Liu W, Zhang X X, Gao Q W, Li Y C, Du Y W. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption[J]. J. Mater. Chem. C, 2016,4(9):1860-1870. doi: 10.1039/C6TC00248J

    18. [18]

      Li Z N, Han X J, Ma Y, Liu D W, Wang Y H, Xu P, Li C L, Du Y C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance[J]. ACS Sustain. Chem. Eng., 2018,6(7):8904-8913. doi: 10.1021/acssuschemeng.8b01270

    19. [19]

      Wang K F, Chen Y J, Tian R, Li H, Zhou Y, Duan H N, Liu H Z. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance[J]. ACS Appl. Mater. Interfaces, 2018,10(13):11333-11342. doi: 10.1021/acsami.8b00965

    20. [20]

      Zhao Z X, Xu S W, Du Z J, Jiang C, Huang X Z. Metal-organic framework-based Pb@MoS2 core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance[J]. ACS Sustain. Chem. Eng., 2019,7(7):7183-7192. doi: 10.1021/acssuschemeng.9b00191

    21. [21]

      Liang X H, Zhang X M, Liu W, Tang D M, Zhang B S, Ji G B. A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance[J]. J. Mater. Chem. C, 2016,4(28):6816-6821. doi: 10.1039/C6TC02006B

    22. [22]

      Feng Z, Yang P P, Wen G S, Li H B, Liu Y, Zhao X C. One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption[J]. Appl. Surf. Sci., 2020,502144129. doi: 10.1016/j.apsusc.2019.144129

    23. [23]

      Wu Q L, Wang J, Jin H H, Dong Y W, Huo S Q, Yang S, Su X G, Zhang B. Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption[J]. Compos. Sci. Technol., 2020,195108206. doi: 10.1016/j.compscitech.2020.108206

    24. [24]

      Fan R L, Zhou J, Xun W, Cheng S B, Vanka S, Cai T Y, Ju S, Mi Z T, Shen M G. Highly efficient and stable Si photocathode with hierarchical MoS2/Ni3S2 catalyst for solar hydrogen production in alkaline media[J]. Nano Energy, 2020,71104631. doi: 10.1016/j.nanoen.2020.104631

    25. [25]

      Gao Q, Zeng W, Miao R Y. Synthesis of multifarious hierarchical flower-like NiO and their gas-sensing properties[J]. J. Mater. Sci.-Mater. Electron., 2016,27(9):9410-9416. doi: 10.1007/s10854-016-4986-3

    26. [26]

      Cao S K, Zeng W, Long H W, Zhang H. Hydrothermal synthesis of novel flower-needle NiO architectures: Structure, growth and gas response[J]. Mater. Lett., 2015,159:385-388. doi: 10.1016/j.matlet.2015.07.045

    27. [27]

      Zhang X H, Huang X H, Xue M Q, Ye X, Lei W N, Tang H, Li C S. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres[J]. Mater. Lett., 2015,148:67-70. doi: 10.1016/j.matlet.2015.02.027

    28. [28]

      Yan T Y, Wang J, Wu Q L, Huo S Q, Duan H J. MOF-derived graphitized porous carbon/Fe-Fe3C nanocomposites with broadband and enhanced microwave absorption performance[J]. J. Mater. Sci.-Mater. Electron., 2019,30(13):12012-12022. doi: 10.1007/s10854-019-01558-9

    29. [29]

      Liu P B, Gao S, Wang Y, Zhou F T, Huang Y, Huang W H, Chang N H. Core-shell Ni@C encapsulated by N-doped carbon derived from nickel‑organic polymer coordination composites with enhanced microwave absorption[J]. Carbon, 2020,170:503-516. doi: 10.1016/j.carbon.2020.08.043

    30. [30]

      Zhang F, Zhang W D, Zhu W F, Cheng B, Qiu H, Qi S H. Core-shell nanostructured CS/MoS2: A promising material for microwave absorption[J]. Appl. Surf. Sci., 2019,463:182-189. doi: 10.1016/j.apsusc.2018.08.121

    31. [31]

      Quan B, Shi W H, Ong S J H, Lu X C, Wang P L Y, Ji G B, Guo Y F, Zheng L R, Xu Z C J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Adv. Funct. Mater., 2019,29(28)1901236. doi: 10.1002/adfm.201901236

    32. [32]

      Zhang X C, Zhang X, Yuan H R, Li K Y, Ouyang Q Y, Zhu C L, Zhang S, Chen Y J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption[J]. Chem. Eng. J., 2020,383123208. doi: 10.1016/j.cej.2019.123208

    33. [33]

      Liu W, Liu L, Yang Z H, Xu J J, Hou Y L, Ji G B. A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites[J]. ACS Appl. Mater. Interfaces, 2018,10(10):8965-8975. doi: 10.1021/acsami.8b00320

    34. [34]

      Xing L S, Li X, Wu Z C, Yu X F, Liu J W, Wang L, Cai C Y, You W B, Chen G Y, Ding J J, Che R C. 3D hierarchical local heterojunction of MoS2/FeS2 for for enhanced microwave absorption[J]. Chem. Eng. J., 2020,379122241. doi: 10.1016/j.cej.2019.122241

    35. [35]

      Wang L, Ma Z L, Zhang Y L, Qiu H, Ruan K P, Gu J W. Mechanically strong and folding endurance Ti3C2Tx Mxene/PbO nanofiber films for efficient electromagnetic interference shielding and thermal management[J]. Carbon Energy, 2022,4(2):200-210. doi: 10.1002/cey2.174

    36. [36]

      Chen S, Zheng Y, Zhang B, Feng Y Y, Zhu J X, Xu J S, Zhang C, Feng W, Liu T X. Cobalt, nitrogen-doped porous carbon nanosheet-assembled flowers from metal-coordinated covalent organic polymers for efficient oxygen reduction[J]. ACS Appl. Mater. Interfaces, 2019,11(1):1384-1393. doi: 10.1021/acsami.8b16920

    37. [37]

      Zhang D Q, Liang S, Chai J X, Liu T T, Yang X Y, Wang H, Cheng J Y, Zheng G P, Cao M S. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method[J]. J. Phys. Chem. Solids, 2019,134:77-82. doi: 10.1016/j.jpcs.2019.05.041

    38. [38]

      Feng W, Wang Y M, Chen J C, Wang L, Guo L X, Ouyang J H, Jia D C, Zhou Y. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: Facile synthesis and enhanced microwave absorption properties[J]. Carbon, 2016,108:52-60. doi: 10.1016/j.carbon.2016.06.084

    39. [39]

      Liu C Y, Lin Z, Chen C, Kirk D W, Xu Y J. Porous C/Ni composites derived from fluid coke for ultra-wide bandwidth electromagnetic wave absorption performance[J]. Chem. Eng. J., 2019,366:415-422. doi: 10.1016/j.cej.2019.02.082

    40. [40]

      Hou C C, Xu Q. Metal-organic frameworks for energy[J]. Adv. Energy Mater., 2018,9(23)1801307.

    41. [41]

      Liu P B, Gao S, Zhang G Z, Huang Y, You W B, Che R C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption[J]. Adv. Funct. Mater., 2021,31(27)2102812. doi: 10.1002/adfm.202102812

    42. [42]

      Gu W H, Ong S J H, Shen Y H, Guo W Y, Fang Y T, Ji G B, Xu Z C J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility[J]. Adv. Sci., 20222204165.

    43. [43]

      Zhang X X, Su X G, Zhang B, Wang J. Preparation of MnO2@CNFs composites and their tunable microwave absorption properties[J]. Mater. Res. Express, 2019,6(7)075005. doi: 10.1088/2053-1591/ab1215

    44. [44]

      Fu M, Jiao Q Z, Zhao Y, Li H S. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials[J]. J. Mater. Chem. A, 2014,2(3):735-744. doi: 10.1039/C3TA14050D

    45. [45]

      Wu Y H, Wang G D, Yuan X X, Fang G, Li P, Ji G B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@ carbon nanosheets composites for wideband microwave absorption[J]. Nano Res., 2023,16:2611-2621. doi: 10.1007/s12274-022-5263-9

    46. [46]

      Wu Y, Zhao Y, Zhou M, Tan S J, Peymanfar R, Aslibeiki B, Ji G B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels[J]. Nano-Micro Lett., 2022,14(1):1-71. doi: 10.1007/s40820-021-00751-y

    47. [47]

      Guan X M, Yang Z H, Zhou M, Yang L, Peymanfar R, Aslibeiki B, Ji G B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption[J]. Small Struct., 2022,3(10)2200102. doi: 10.1002/sstr.202200102

    48. [48]

      Yang N, Luo Z X, Zhu G R, Chen S C, Wang X L, Wu G, Wang Y Z. Ultralight three-dimensional hierarchical cobalt nanocrystals/N‑doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption[J]. ACS Appl. Mater. Interfaces, 2019,11(39):35987-35998. doi: 10.1021/acsami.9b11101

    49. [49]

      Zhang W D, Zhang X, Wu H J, Yan H X, Qi S H. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials[J]. J. Alloy. Compd., 2018,751:34-42. doi: 10.1016/j.jallcom.2018.04.111

    50. [50]

      Gai L X, Zhao Y M, Song G L, An Q D, Xiao Z Y, Zhai S R, Li Z C. Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic waveabsorption: Assembly and enhanced mechanism[J]. Compos. Pt. A-Appl. Sci. Manuf., 2020,136105965. doi: 10.1016/j.compositesa.2020.105965

    51. [51]

      Zhang X J, Li S, Wang S W, Yin Z J, Zhu J Q, Gou A P, Wang G S, Yin P G, Guo L. Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband[J]. J. Phys. Chem. C, 2016,120:22019-22027. doi: 10.1021/acs.jpcc.6b06661

    52. [52]

      Pan J J, Sun X, Wang T, Zhu Z T, He Y P, Xia W, He J P. Porous coin-like Fe@MoS2 composite with optimized impedance matching for efficient microwave absorption[J]. Appl. Surf. Sci., 2018,457:271-279. doi: 10.1016/j.apsusc.2018.06.263

    53. [53]

      Zhu Q, Zhang X, Zheng Y, Ying X, Nie Z G, Zhang W D, Yan H X, Qi S H. CoxSy/C@MoS2 nanofibers: Synthesis, characterization and microwave absorption investigation[J]. J. Mater. Sci.-Mater. Electron., 2021,32:25782-25794. doi: 10.1007/s10854-020-04601-2

    54. [54]

      Ding X, Huang Y, Li S P, Zhang N, Wang J G. 3D architecture reduced graphene oxide-MoS2 composite: Preparation and excellent electromagnetic wave absorption performance[J]. Compos. A Appl. Sci. Manuf., 2016,90:424-432. doi: 10.1016/j.compositesa.2016.08.006

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    8. [8]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(11)
  • Abstract views(977)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return