Citation: Qing-Mei ZHANG, Lu-Peng ZHANG, Kai-Wen ZHENG, Guo-Qing YANG, Song-Jie HE, Xiu-Juan DU, Feng-Hua CHEN, Bing LI. Green synthesis of high-stability black rice carbon dots for application in cell imaging[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 735-745. doi: 10.11862/CJIC.2023.045 shu

Green synthesis of high-stability black rice carbon dots for application in cell imaging

  • Corresponding author: Bing LI, Libing-1975@163.com
  • Received Date: 21 September 2022
    Revised Date: 15 March 2023

Figures(6)

  • Carbon dots (CDs) were synthesized by a facile hydrothermal method using cheap black rice as a carbon source.The synthesized CDs exhibited excellent stability, which was not sensitive to changes in temperature, pH, and solution of NaCl, and were immune to many metal ions.The purified CDs also had low cytotoxicity against human oral keratinocytes (Hok), cancer cells (cervical cancer, Hela), and bone marrow mesenchymal stem (BMSC, MC3T3) cells.Meanwhile, it behaved with excitation-independent behavior in the shorter wavelength range (410-470 nm) and excitation-dependent behavior in the longer wavelength range (470-510 nm).Due to the excellent fluorescence properties and stability, we applied them to the intracellular imaging of Hok, Hela, and MC3T3 cells.
  • 加载中
    1. [1]

      Gao X H, Du C, Zhuang Z H, Chen W. Carbon quantum dot -based nanoprobes for metal ion detection[J]. J. Mater. Chem. C, 2016,4:6927-6945. doi: 10.1039/C6TC02055K

    2. [2]

      Tejwan N, Saha S K, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources[J]. Adv. Colloid Interface Sci., 2020,275102046. doi: 10.1016/j.cis.2019.102046

    3. [3]

      ZHU Z C, YANG B. Fabrication and application of fluorescence biosensors based on carbon dots and aptamer[J]. Chinese Journal of Luminescence, 2021,42(8):1196-1214. doi: 10.37188/CJL.20210161

    4. [4]

      Li H X, Yan X, Kong D S, Jin R, Sun C Y, Du D, Lin Y H, Lu G Y. Recent advances in carbon dots for bioimaging applications[J]. Nanoscale Horiz., 2020,5:218-234. doi: 10.1039/C9NH00476A

    5. [5]

      Ding H, Zhou X X, Wei J S, Li X B, Qin B T, Chen X B, Xiong H M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications[J]. Carbon, 2020,167:322-344. doi: 10.1016/j.carbon.2020.06.024

    6. [6]

      Chung Y J, Kim J, Park C B. Photonic carbon dots as an emerging nanoagent for biomedical and health care applications[J]. ACS Nano, 2020,14:6470-6497. doi: 10.1021/acsnano.0c02114

    7. [7]

      ZHENG M, LIU K M, SU Y. Carbon dots for biomedical application[J]. Chinese Journal of Luminescence, 2021,42(8):1233-1244.  

    8. [8]

      MAO H H, ZHAN Z H, ZHOU G H, XUE M Y, HAN G C, JIANG M X, LUO X N, LIN X Y. Advances in application of fluorescent carbon quantum dots in drug analysis[J]. Chinese Journal of Luminescence, 2021,42(8):1245-1256.  

    9. [9]

      Tian Z, Zhang X T, Li D, Zhou D, Jing P T, Shen D Z, Qu S N, Zboril R, Rogach A L. Full-color inorganic carbon dot phosphors for whitelight-emitting diodes[J]. Adv. Opt. Mater., 2017,51700416. doi: 10.1002/adom.201700416

    10. [10]

      Yuan F L, Yuan T, Sui L Z, Wang Z B, Xi Z F, Li Y C, Li X H, Fan L Z, Tan Z A, Chen A M, Jin M X, Yang S H. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nat. Commun., 2018,92249. doi: 10.1038/s41467-018-04635-5

    11. [11]

      WANG Q, YANG W, ZHUANG J R, LI J, YANG P Z, WANG Z L. Preparation and application of bio-based carbon dots for LED chips[J]. Chinese Journal of Luminescence, 2021,42(8):1314-1322. doi: 10.37188/CJL.20210159

    12. [12]

      Gao S Y, Chen Y L, Fan H, Wei X J, Hu C G, Wang L X, Qu L T. A green one-arrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts[J]. J. Mater. Chem. A, 2014,2:6320-6325. doi: 10.1039/c3ta15443b

    13. [13]

      Zhang J, Yuan Y, Liang G L, Yu S H. Scale-up synthesis of fragrant nitrogen -doped carbon dots from bee pollens for bioimaging and catalysis[J]. Adv. Sci., 2015,21500002. doi: 10.1002/advs.201500002

    14. [14]

      Guo J Z, Li H, Ling L T, Li G, Cheng R, Lu X, Xie A Q, Li Q, Wang C F, Chen S. Green synthesis of carbon dots toward anti-counterfeiting[J]. ACS Sustain. Chem. Eng., 2019,8:1566-1572.

    15. [15]

      LIU J, ZHANG X R, XIONG H M. Application of fluorescent carbon dots in fingerprint detection[J]. Chinese Journal of Luminescence, 2021,42(8):1095-1113.  

    16. [16]

      Permatasari F A, Fukazawa H, Ogi T, Iskandar F, Okuyama K. Design of pyrrolic-N -rich carbon dots with absorption in the first nearinfrared window for photothermal therapy[J]. ACS Appl. Nano Mater., 2018,1:2368-2375. doi: 10.1021/acsanm.8b00497

    17. [17]

      NAN F C, XUE X K, GE J C, WANG P F. Recent advances of red/near infrared light responsive carbon dots for tumor therapy[J]. Chinese Journal of Luminescence, 2021,42(8):1155-1171.  

    18. [18]

      Alam A M, Park B Y, Ghouri Z K, Park M, Kim H Y. Synthesis of carbon quantum dot from cabbage with down -and up -conversion photoluminescence properties: Excellent imaging agent for biomedical application[J]. Green Chem., 2015,17:3791-3797. doi: 10.1039/C5GC00686D

    19. [19]

      Zhao S J, Lan M H, Zhu X Y, Xue H T, Ng T W, Meng X M, Lee C S, Wang P F, Zhang W J. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging[J]. ACS Appl. Mater. Interfaces, 2015,7:17054-17060. doi: 10.1021/acsami.5b03228

    20. [20]

      Liu Y, Liu Y N, Park M, Park S J, Zhang Y F, Akanda M R, Park B Y, Kim H Y. Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging[J]. Carbon Lett., 2017,21:61-67. doi: 10.5714/CL.2017.21.061

    21. [21]

      Jeong C J, Roy A K, Kim S H, Lee J E, Jeong J H, In I, Park S Y. Fluorescence carbon nanoparticles derived from natural material of mango fruit for bio-imaging probes[J]. Nanoscale, 2014,6:15196-15202. doi: 10.1039/C4NR04805A

    22. [22]

      Yang R, Guo X F, Jia L H, Zhang Y, Zhao Z L, Lonshakov F. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging[J]. Appl. Surf. Sci., 2017,423:426-432. doi: 10.1016/j.apsusc.2017.05.252

    23. [23]

      HU Y F, ZHANG L L, LIN L Y, LI X F, ZHAO S L, LIANG H. Preparation of carbon quantum dots from lycium chinensis and as a fluorescent probe for high sensitive detection of D -penicillamine[J]. Scientia Sinica Chimica, 2016,47:258-266.  

    24. [24]

      Konwar A, Chowdhury D. Property relationship of Alginate and Alginate-carbon dot nanocomposite with bivalent and trivalent crosslinker ions[J]. RSC Adv., 2015,5:62864-62870. doi: 10.1039/C5RA09887D

    25. [25]

      Wang Z Y, Liao H, Wu H, Wang B B, Zhao H D, Tan M Q. Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery[J]. Anal. Methods, 2015,7:8911-8917. doi: 10.1039/C5AY01978H

    26. [26]

      Li W D, Liu Y, Wu M, Feng X L, Redfern S A T, Shang Y, Yong X, Feng T L, Wu K F, Liu Z Y, Li B J, Chen Z M, Tse J S, Lu S Y, Yang B. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media[J]. Adv. Mater., 2018,30e1800676. doi: 10.1002/adma.201800676

    27. [27]

      Song Y, Yan X, Li Z H, Qu N B, Zhu C Z, Ye R F, Li S Q, Du D, Lin Y H. Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing[J]. J. Mater. Chem B, 2018,6:3181-3187. doi: 10.1039/C8TB00116B

    28. [28]

      Yu C Y, Xuan T T, Chen Y W, Zhao Z J, Sun Z, Li H L. A facile, green synthesis of highly fluorescent carbon nanoparticles from oatmeal for cell imaging[J]. J. Mater. Chem. C, 2015,3:9514-9518. doi: 10.1039/C5TC02057C

    29. [29]

      Zhang Y, Gao Z Y, Yang X, Chang J L, Liu Z Y, Jiang K. Fish-scalederived carbon dots as efficient fluorescent nanoprobes for detection of ferric ions[J]. RSC Adv., 2019,9:940-949.

    30. [30]

      Sawalha S, Silvestri A, Criado A, Bettini S, Prato M, Valli L. Tailoring the sensing abilities of carbon nanodots obtained from olive solid wastes[J]. Carbon, 2020,167:696-708. doi: 10.1016/j.carbon.2020.06.011

    31. [31]

      Meng W X, Bai X, Wang B Y, Liu Z Y, Lu S Y, Yang B. Biomassderived carbon dots and their applications[J]. Energy Environ. Mater., 2019,2:172-192.

    32. [32]

      Li L P, Zhang R P, Lu C X, Sun J H, Wang L J, Qu B T, Li T T, Liu Y D, Li S J. In situ synthesis of NIR -light emission carbon dots derived from spinach for bio-imaging application[J]. J. Mater. Chem. B, 2017,5:7328-7334.

    33. [33]

      Liao J, Cheng Z H, Zhou L. Nitrogen -doping enhanced fluorescent carbon dots: Green synthesis and their applications for bioimaging and label -free detection of Au3+ ions[J]. ACS Sustain. Chem. Eng., 2016,4:3053-3061.

    34. [34]

      Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. J. Am. Chem. Soc., 2012,134:747-750.

    35. [35]

      Li L L, Wu G H, Yang G H, Peng J, Zhao J W, Zhu J J. Focusing on luminescent graphene quantum dots: Current status and future perspectives[J]. Nanoscale, 2013,5:4015-4039.

    36. [36]

      Liu W, Diao H P, Chang H H, Wang H J, Li T T, Wei W L. Green synthesis of carbon dots from rose -heart radish and application for Fe3+ detection and cell imaging[J]. Sens. Actuators B-Chem., 2017,241:190-198.

  • 加载中
    1. [1]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    2. [2]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    6. [6]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    9. [9]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    10. [10]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    11. [11]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    14. [14]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    15. [15]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    16. [16]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    17. [17]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    18. [18]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    19. [19]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(3)
  • Abstract views(582)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return