Citation: Zhi-Yu ZHANG, Jing SONG, Hong-Qian SUN, Yun-Peng LI, Hao LAN, Tao QI, Liang-Liang TIAN. Zr(Ⅳ) structure in aqueous zirconium chloride octahydrate solution from small-angle X-ray scattering analysis[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 765-774. doi: 10.11862/CJIC.2023.041 shu

Zr(Ⅳ) structure in aqueous zirconium chloride octahydrate solution from small-angle X-ray scattering analysis

  • Corresponding author: Jing SONG, jsong@ipe.ac.cn
  • Received Date: 8 October 2022
    Revised Date: 13 March 2023

Figures(10)

  • In this work, the dominant structures of Zr(Ⅳ) in zirconium oxychloride octahydrate solution were measured by using small-angle X-ray scattering (SAXS).The results show that the dominant structures of Zr(Ⅳ) are in the form of polymers in the solution, and the degrees of polymerization are susceptible to acidity.The different effects of the concentration, heating treatment, standing time, and HCl concentration of zirconium oxychloride in octahydrate were studied.With 0.0-5.0 mol·L-1 HCl as the solvent, 10-300 g·L-1 zirconium oxychloride solution was prepared, moreover, the solution was heated and placed for a long time respectively.The SAXS tests were carried out for all the solutions, and the Rg experiments of the particles in the solution were calculated using the Guinier equation.Meanwhile, the CYLview program for solving the most minor enclosing cylinder problems was used to simulate the different polymer structures of Zr(Ⅳ) in zirconium oxychloride octahydrate solution and obtain the theoretical Rg values of different structures.By comparing the experimental Rg and the calculated Rg, the dominant structures of Zr(Ⅳ) in solution under different conditions were obtained.The results show that the dominant structures of Zr(Ⅳ) are affected by many factors such as acidity and concentration, especially the concentration of HCl is the key factor affecting the degree of polymerization.When the solvent is deionized water, the polymerization degree of zirconium is relatively high in solutions with low zirconium concentration.
  • 加载中
    1. [1]

      Gandini A, Belgacem M N. Furans in polymer chemistry[J]. Prog. Mater. Sci., 1997,22(6):1203-1379.

    2. [2]

      Toth L M, Lin J S, Felker L K. Small-angle X-ray scattering from zirconium (Ⅳ) hydrous tetramers[J]. J. Chem. Phys., 1991,95:3106-3108. doi: 10.1021/j100161a028

    3. [3]

      Nyman M. Small-angle X-ray scattering to determine solutions speciation of metal-oxo clusters[J]. Coord. Chem. Rev., 2017,352:45-48.

    4. [4]

      Wang Z, Xin X, Zhang M, Li Z, Lv H J, Yang G Y. Recent advances of mixed-transition-metalsubstituted polyoxometalates[J]. Sci. China-Chem., 2022,65:1515-1525. doi: 10.1007/s11426-022-1276-4

    5. [5]

      Li M, Zhao Z, Yin P C. Small-angle X-ray scattering studies of emergent polyoxometalates in solution[J]. J. Coord. Chem., 2020,73(17/18/19):2365-2372.

    6. [6]

      Ziebarth R P, Corbett J D. Centered zirconium chloride clusters[J]. Synthetic and structural aspects of a broad solid state chemistry. Acc. Chem. Res., 1989,22(7):256-262.

    7. [7]

      Stojilovic N, Bender E T, Ramsier R D. Surface chemistry of zirconium[J]. Prog. Surf. Sci., 2005,78(3/4):101-184.

    8. [8]

      Devia D H, Sykes A G. Aqueous solution chemistry of zirconium (Ⅳ). 1. Kinetic studies on hydrogen ion and general acid (HX) induced dissociations of the tetrameric ion (Zr4(OH)8(H2O)16)8+[J]. Inorg. Chem., 1981,20(3):910-913. doi: 10.1021/ic50217a054

    9. [9]

      Tera H, Aberg C. Strength of knots in surgery in relation to type of knot, type of suture material and dimension of suture thread[J]. Acta Chirurgica Scandinavica, 1977,143(2):75-83.

    10. [10]

      Hannane S B F, Bouix J. Raman spectrometric and proton NMR study of Zr(Ⅳ) hydrolysis in aqueous solution. Ⅱ. Quantitative study[J]. Bull. Soc. Chim. Fr., 1990,127(1/2/3/4):50-56.

    11. [11]

      Jutson J A, Richardson R M, Jones S L. Norman C. Small angle Xray scattering studies of polymeric zirconium species in aqueous solution//Higgins S. Materials research society symposia proceedings: Vol. 180. Cambridge: Cambridge University Press, 1990: 123-127

    12. [12]

      Muha G M, Vaughan P A. Structure of the complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides[J]. J. Chem. Phys., 1960,33:194-199. doi: 10.1063/1.1731077

    13. [13]

      Åberg M, Glaser J. 17O and 1H NMR study of the tetranuclear hydroxo zirconium complex in aqueous solution[J]. Inorg. Chim. Acta, 1993,206:53-61. doi: 10.1016/S0020-1693(00)89259-2

    14. [14]

      Dewald H D. Use of EXAFS to probe electrode-solution interfaces[J]. Electroanalysis, 1991,3(3):145-155. doi: 10.1002/elan.1140030303

    15. [15]

      Johnson J S, Kraus K A. Hydrolytic behavior of metal ions. Ⅵ. Ultracentrifugation of zirconium (Ⅳ) and hafnium (Ⅳ); Effect of acidity on the degree of polymerization[J]. J. Am. Chem. Soc., 1956,78(16)39373943.

    16. [16]

      Mak T C W. Refinement of the crystal structure of zirconyl chloride octahydrate[J]. Can. J. Chem., 1968,46:3491-3497. doi: 10.1139/v68-579

    17. [17]

      Singhal A, Toth L M, Lin J S, Affholter K. Zirconium (Ⅳ) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution[J]. J. Am. Chem. Soc., 1996,118:11529-11534. doi: 10.1021/ja9602399

    18. [18]

      Walther C, Rothe J, Fuss M, Büchner S, Koltsov S, Bergmann T. Investigation of polynuclear Zr(Ⅳ) hydroxide complexes by nanoelectrospray mass-spectrometry combined with XAFS[J]. Anal. Bioanal. Chem., 2007,388:409-431. doi: 10.1007/s00216-007-1223-1

    19. [19]

      Gossard A, Toquer G, Grandjean S, Grandjean A. Coupling between SAXS and Raman spectroscopy applied to the gelation of colloidal zirconium oxy-hydroxide systems[J]. J. Sol-Gel Sci. Technol., 2014,71:571-579. doi: 10.1007/s10971-014-3409-2

    20. [20]

      Kobayashi T, Nakajima S, Motokawa R, Matsumura D, Saito T, Sasaki T. Structural approach to understanding the solubility of metal hydroxides[J]. Langmuir, 2019,35:7995-8006. doi: 10.1021/acs.langmuir.9b01132

    21. [21]

      Bremholm M, Birkedal H, Iversen B B, Pedersen J S. Structural evolution of aqueous zirconium acetate by time-resolved small-angle Xray scattering and rheology[J]. J. Phys. Chem. C, 2015,119:12660-12667. doi: 10.1021/acs.jpcc.5b00698

    22. [22]

      Riello P, Minesso A, Craievich A, Benedetti A. Synchrotron SAXS study of the mechanisms of aggregation of sulfate zirconia sols[J]. J. Phys. Chem. B, 2003,107(15):3390-3399. doi: 10.1021/jp027432b

    23. [23]

      He J, Li H, Riisager A, Yang S. Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides[J]. ChemCatChem, 2018,10(2):430-438. doi: 10.1002/cctc.201701266

    24. [24]

      Hu L, Li T, Xu J, He A, Tang X, Chu X, Xu J. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2, 5dihydroxymethylfuran over magnetic zirconium based coordination polymer[J]. Chem. Eng. J., 2018,352:110-119. doi: 10.1016/j.cej.2018.07.007

    25. [25]

      Zhang Y X, Wang X, Hou T, W , Huan L, Han L J, Xiao W H. Efficient microwave-assisted production of biofuel ethyl levulinate from corn stover in ethanol medium[J]. J. Energy Chem., 2018,27(3):890-897. doi: 10.1016/j.jechem.2017.06.010

    26. [26]

      He J, Xu Y F, Yu Z Z, Li H, Zhao W F, Wu H G, Yang S. ZrOCl2 as a bifunctional and in situ precursor material for catalytic hydrogen transfer of bio based carboxides[J]. Sustain. Energ. Fuels, 2020,4(5):3102-3114.

    27. [27]

      Turan B, Sarigol G, Demircivi P. Adsorption of tetracycline antibiotics using metal and clay embedded cross linked chitosan[J]. Mater. Chem. Phys., 2022,279125781. doi: 10.1016/j.matchemphys.2022.125781

    28. [28]

      Teufer G. The crystal structure of tetragonal ZrO2[J]. Acta Crystallogr., 1962,15(11):1187-1187. doi: 10.1107/S0365110X62003114

    29. [29]

      Gossard A, Toquer G, Grandjean S, Grandjean A. Coupling between SAXS and Raman spectroscopy applied to the gelation of colloidal zirconium oxy-hydroxide systems[J]. J. Sol-Gel Sci. Technol., 2014,71:571-579. doi: 10.1007/s10971-014-3409-2

    30. [30]

      Olliges-Stadler I, Rossell M D, Suess M J, Ludi B, Bunk O, Pedersen J S, Birkedal H, Niederberger M. A comprehensive study of the crystallization mechanism involved in the nonaqueous formation of tungstite[J]. Nanoscale, 2013,5:8517-8525. doi: 10.1039/c3nr02020g

    31. [31]

      Pedersen J S. Analysis of smallangle scattering data from colloids and polymer solutions: Modeling and least-squares fitting[J]. Adv. Colloid Interface Sci., 1997,70:171-210. doi: 10.1016/S0001-8686(97)00312-6

    32. [32]

      Pedersen J S, Schurtenberger P. Scattering functions of semiflexible polymers with and without excluded volume effects[J]. Macromolecules, 1996,29:7602-7612. doi: 10.1021/ma9607630

    33. [33]

      Cates M E. Reptation of living polymers-Dynamics of entangled polymers in the presence of reversible chain-scission reactions[J]. Macromolecules, 1987,20(4):2289-2296.

    34. [34]

      Petitjean M. About the algebraic solutions of smallest enclosing cylinders problems[J]. Appl. Algebr. Eng. Commun. Comput., 2012,23151164.

    35. [35]

      Singhal A, Keefer K D. A study of aluminum speciation in aluminum chloride solutions by small angle X-ray scattering and 27Al NMR[J]. J. Mater. Res., 1994,8:1973-1983.

  • 加载中
    1. [1]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    6. [6]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    7. [7]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    13. [13]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    16. [16]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

Metrics
  • PDF Downloads(0)
  • Abstract views(725)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return