Citation: Zhi-Yun DONG, Chang-Sheng GUO, Lin GAO, Xing-Yu XU, Cheng-Qi LIU, Fu-Gui XI. Fluorescent probe based on N-ethyl carbazol-3-formaldehyde Schiff-base: Synthesis and properties of Cu2+ detection[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 859-866. doi: 10.11862/CJIC.2023.040 shu

Fluorescent probe based on N-ethyl carbazol-3-formaldehyde Schiff-base: Synthesis and properties of Cu2+ detection

  • Corresponding author: Fu-Gui XI, xifugui@163.com
  • Received Date: 21 November 2022
    Revised Date: 18 January 2023

Figures(13)

  • N-ethyl carbazol-3-formaldehyde was synthesized by using carbazole as initial material through a two-step reaction, and its crystal structure was determined by X-ray single crystal diffraction and showed that the crystal belongs to monoclinic, P21/n space group. A new fluorescent probe CMP for Cu2+ ions was designed and synthesized from N-ethyl carbazol-3-formaldehyde and 1,3-diamino-2-propanol. CMP in DMSO/H2O (6∶4, V/V, Tris-HCl buffer, pH=7.0) solution displayed highly selective and sensitive fluorescence "on-off" response over all the other competitive metal ions including K+, Ni2+, Pb2+, Sn2+, Mn2+, Fe3+, Fe2+, Cr3+, Co2+, Cd2+, Al3+, and Mg2+. The fluorescence intensity of CMP presented a good linear relationship to the Cu2+ concentration and with a low detection limit of 0.205 μmol·L-1 for Cu2+ ion, and the binding constant was calculated to be 1.52×105 L·mol-1. 1/(I0-I) of CMP vs cCu2+/cCMP plot, Job plot, and 1H NMR titration confirmed that fluorescence decrease was caused by the formation of 1∶2 complex between CMP and copper ion. The recovery tests demonstrated that CMP could accurately detect the existence of Cu2+ ions in water samples.
  • 加载中
    1. [1]

      Chopraa T, Sasanb S, Devib L, Parkesh R, Kapoor K K. A comprehensive review on recent advances in copper sensors[J]. Coord. Chem. Rev., 2022,470214704. doi: 10.1016/j.ccr.2022.214704

    2. [2]

      Li Z P, Hou J T, Wang S, Zhu L, He X J, Shen J L. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications[J]. Coord. Chem. Rev., 2022,469214695. doi: 10.1016/j.ccr.2022.214695

    3. [3]

      LUO W J, ZHAO B, ZHANG S L, JIA Y F, LIU J. Detection of Fe3+ and Cu2+ by fluorescence probe of pyrazoline derivatives with 9- anthralaldehyde as fluorescent group[J]. Chinese J. Inorg. Chem., 2021,37(3):421-430.  

    4. [4]

      Huo F J, Wang L, Yin C X, Yang Y T, Tong H B, Chao J B, Zhang Y B. The synthesis, characterization of three isomers of rhodamine derivative and their application in copper(Ⅱ) ion recognition[J]. Sens. Actuator B-Chem., 2013,188:735-740. doi: 10.1016/j.snb.2013.07.102

    5. [5]

      Zhou L, Li S N, Li F X. Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry[J]. Environ. Res., 2022,215(2)114188.

    6. [6]

      Lin W, Su F, Lin M Z, Jin M F, Li Y H, Ding K W, Chen Q H, Qian Q R, Sun X L. Effect of microplastics PAN polymer and/or Cu2+ pollution on the growth of chlorella pyrenoidosa[J]. Environ. Pollut., 2020,265114985. doi: 10.1016/j.envpol.2020.114985

    7. [7]

      Wei T B, Yong B R, Dang L R, Zhang Y M, Yao H, Qin L. A simple water-soluble phenazine dye for colorimetric/fluorogenic dual-mode detection and removal of Cu2+ in natural water and plant samples[J]. Dyes Pigment., 2019,171107707. doi: 10.1016/j.dyepig.2019.107707

    8. [8]

      BIE F S, REN A S, XU H Q, WANG J H, LIU X J, ZHU D J. Fluorescent probe based on carbazole-N,S-heterocrown ether: Synthesis and properties of Ag+ detection[J]. Chinese J. Inorg. Chem., 2022,38(2):237-243.  

    9. [9]

      LI Y J, LI J Y, XU Y T, JIN K, CAO X. Highly selective naked-eye and fluorescence probe for Cu2+ based on carbazole Schiff-base[J]. Chinese J. Org. Chem., 2017,37(4):896-901.  

    10. [10]

      YANG Y, CHEN X T, LI P, XU N, LI J M. Synthesis of carbazol- diaminomaleonitrile fluorescent (the original text is flourescent) probe for detection of Cu2+ and ClO-[J]. Chinese Journal of Analysis Laboratory, 2021,40(1):34-39.  

    11. [11]

      HAN Q R, JIANG Y L, WANG B X. Highly selective fluorescence detection of Cu2+ by the Schiff base of EDA-NECD[J]. Journal of Functional Materials, 2011,42(9):1588-1590.  

    12. [12]

      LI Y J, ZHANG N, JIN K, XU Y T, WANG S Y, ZHOU X X. Novel carbazole-thiosemicarbazide based schiff-base probes for Cu2+[J]. Chinese J. Org. Chem., 2017,37(10):2640-2646.  

    13. [13]

      LI Y J, ZHANG N, LIU J H, JIN K, WANG S Y. Detection of HSO4- ion with a colorimetric and fluorescent probe based on hydrolysis reaction of carbazole-derived schiff base in aqueous medium[J]. Chinese J. Org. Chem., 2018,38(11):3026-3031.  

    14. [14]

      Liu X N, Xu P P, Zhao X, Ge J L, Huang C, Zhu W J, Li C, Du L C, Fang M. A novel dual-function chemosensor for visual detection of Cu2+ in aqueous solution based on carbazole and its application[J]. Inorg. Chim. Acta, 2019,495118975. doi: 10.1016/j.ica.2019.118975

    15. [15]

      ZHOU Y Y, LÜ Y J. Synthesis of novel carbazole-based Schiff base and Fe3+ fluorescence spectral recognition[J]. Chemical Reagents, 2017,39(8):871-873.  

    16. [16]

      Kolcu F, Kaya İ. Carbazole-based schiff base: A sensitive fluorescent 'turn-on' chemosensor for recognition of Al(Ⅲ) ions in aqueous-alcohol media[J]. Arab. J. Chem., 2022,15103935. doi: 10.1016/j.arabjc.2022.103935

    17. [17]

      Xi P P, Zheng C H, Yu X, Zhang T T, Qu S Z. The interactive effect between the oxazole-containing optical switch nucleus and carbazole-containing salicylidene Schiff base: Enhancing photo reactivity and tuning the ion sensing property[J]. J. Photochem. Photobiol. A, 2023,436114352. doi: 10.1016/j.jphotochem.2022.114352

    18. [18]

      Malthus S J, Cameron S A, Brooker S. Improved access to 1, 8-diformyl-carbazoles leads to metal-free carbazole-based[2+2] Schiff base macrocycles with strong turn-on fluorescence sensing of Zinc(Ⅱ) ions[J]. Inorg. Chem., 2018,57(5):2480-2488. doi: 10.1021/acs.inorgchem.7b02763

    19. [19]

      LI Z, LI J, QIN J G. A simple approach to the synthesis of N-ethylcarbazole[J]. Chemical Reagents, 2001,23(5)297. doi: 10.3969/j.issn.0258-3283.2001.05.018

    20. [20]

      Budreckiene R, Buika G, Grazulevicius J V, Jankauskas V, Staniskiene B. Vinyloxyethyl-substituted carbazole-based hydrazone and its adducts with diol and dithiol as glass-forming hole transport materials[J]. J. Photochem. Photobiol. A, 2006,181:257-262. doi: 10.1016/j.jphotochem.2005.12.006

    21. [21]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    22. [22]

      HE J W, XIE Z F, XUE S S, LIU Y C, SHI W, CHEN X. Synthesis of salicylhydrazone probe with high selectivity and rapid detection Cu2+ and its application in logic gate and adsorption[J]. Chinese J. Org. Chem., 2021,41(7):2839-2847.  

    23. [23]

      Goswami S, Das A K, Manna A, Maity A K, Saha P, Quah C K, Fun H K, Abdel-Aziz H A. Nanomolar detection of hypochlorite by a rhodamine-based chiral hydrazide in absolute aqueous media: Application in tap water analysis with live-cell imaging[J]. Anal. Chem., 2014,86(13):6315-632. doi: 10.1021/ac500418k

    24. [24]

      Herbert J M, Woodgate P D, Denny W A. Potential antitumor agents. 53. synthesis, DNA binding properties, and biological activity of perimidines designed as minimal DNA-intercalating agents[J]. J. Med. Chem., 1987,30(11):2081-2086. doi: 10.1021/jm00394a025

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    12. [12]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    13. [13]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    19. [19]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    20. [20]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

Metrics
  • PDF Downloads(8)
  • Abstract views(807)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return