Citation: Hong-Mei CHAI, Jia-Ling YAN, Xue-Hua SUN, Gang-Qiang ZHANG, Yi-Xia REN, Lou-Jun GAO. Four isostructural lanthanide metal-organic frameworks: Syntheses, structures, and fluorescence sensing of Fe3+ and ciprofloxacin hydrochloride[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 775-784. doi: 10.11862/CJIC.2023.039 shu

Four isostructural lanthanide metal-organic frameworks: Syntheses, structures, and fluorescence sensing of Fe3+ and ciprofloxacin hydrochloride

Figures(9)

  • Using nitrogen-containing tetra-carboxylate ligands 3, 5-bis (3', 5'-dicarboxyphenyl)-1H-1, 2, 4-triazole (H4BDT), four isostructural lanthanide metal-organic frameworks (Ln-MOFs): {[La3(BDT)2(HCOO)(H2O)5]·0.5H2O· 3DMF}n(1), {[Ce3(BDT)2(HCOO)(H2O)5]·3DMF}n(2), {[Pr3(BDT)2(HCOO)(H2O)5]·3DMF}n(3), and{[Nd3(BDT)2(HCOO)(H2O)5]·3DMF}n(4), have been synthesized by solvothermal method and characterized by single-crystal Xray diffraction, powder X-ray diffraction, elemental analysis, thermogravimetric analysis, FT-IR, adsorption experiment of N2, and luminescence spectra.The results show that all these Ln-MOFs are monoclinic C2/m space group crystals and have 3D mesoporous structures with double cores as inorganic building units.Among them, 2 could selectively fluorescently detect Fe3+ ion and ciprofloxacin hydrochloride drug molecule and the limits of detection were 4.59 and 0.77 μmol·L-1, respectively.
  • 加载中
    1. [1]

      Zhao L, Song X Z, Wang H, Wang X Y, Wu D, Wei Q, Ju H X. Eu (Ⅱ) MOF as NIR probe for highly efficient instantaneous anodic electroluminescence realized environmental pollutant trace monitoring[J]. Chem. Eng. J., 2022,446136912. doi: 10.1016/j.cej.2022.136912

    2. [2]

      Yang G L, Jiang X L, Xu H, Zhao B. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021,172005327. doi: 10.1002/smll.202005327

    3. [3]

      Qin G X, Wang J, Li L, Yuan F F, Zha Q Q, Bai W B, Ni Y H. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of cefixime[J]. Talanta, 2021,221121421. doi: 10.1016/j.talanta.2020.121421

    4. [4]

      Qi C X, Xu Y B, Li H, Chen X B, Xu L, Liu B. A highly sensitive and selective turn off fluorescence sensor for Fe3+ detection based on a terbium metal organic framework[J]. J. Solid State Chem., 2021,294121835. doi: 10.1016/j.jssc.2020.121835

    5. [5]

      Wu L J, Ding Q, Wang X, Li P, Fan N N, Zhou Y Q, Tong L L, Zhang W, Zhang W, Tang B. Visualization of dynamic changes in labile iron (Ⅱ) pools in endoplasmic reticulum stress-mediated drug-induced liver injury[J]. Anal. Chem., 2020,92:1245-1251. doi: 10.1021/acs.analchem.9b04411

    6. [6]

      Dey N, Ali A, Kamra M, Bhattacharya S. Simultaneous sensing of ferritin and apoferritin proteins using an iron-responsive dye and evaluation of physiological parameters associated with serum iron estimation[J]. J. Mater. Chem. B, 2019,7:986-993. doi: 10.1039/C8TB01523F

    7. [7]

      Zecca L, Youdim M B H, Riederer P, Connor J R, Crichton R R. Iron, brain ageing and neurodegenerative disorders[J]. Nat. Rev. Neurosci., 2004,5:863-873. doi: 10.1038/nrn1537

    8. [8]

      Chen Y Q, Sun X B, Pan W, Yu G F, Wang J P. Fe3+-sensitive carbon dots for detection of Fe3+ in aqueous solution and intracellular imaging of Fe3+ inside fungal cells[J]. Front. Chem., 2019,7:911-919.

    9. [9]

      Tan H L, Zhang L, Ma C J, Song Y H, Xu F G, Chen S H, Wang L. Terbium based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids[J]. ACS Appl. Mater. Interfaces, 2013,5:11791-11796. doi: 10.1021/am403442q

    10. [10]

      Gürbay A, Gonthier B, Signorini-Allibe N, Barret L, Favier A, Hıncal F. Ciprofloxacin-induced DNA damage in primary culture of rat astrocytes and protection by vitamin E[J]. Neurotoxicology, 2006,27:6-10. doi: 10.1016/j.neuro.2005.05.007

    11. [11]

      Zimpfer A, Propst A, Mikuz , G , Vogel W, Terracciano L, Stadlmann S. Ciprofloxacin-induced acute liver injury: Case report and review of literature[J]. Virchows Arch., 2004,444:87-89. doi: 10.1007/s00428-003-0917-9

    12. [12]

      Garlando F, Täuber M G, Joos B, Oelz O, Lüthy R. Ciprofloxacin induced hematuria[J]. Infection, 1985,13:177-178. doi: 10.1007/BF01642807

    13. [13]

      Atsever N, Borahan T, Bakırdere E G, Bakırdere S. Determination of iron in hair samples by slotted quartz tube-flame atomic absorption spectrometry after switchable solvent liquid phase extraction[J]. J. Pharm. Biomed. Anal., 2020,186113274. doi: 10.1016/j.jpba.2020.113274

    14. [14]

      Si T T, Lu X F, Zhang H X, Liang X J, Wang S A, Guo Y. A new strategy for the preparation of core shell MOF/Polymer composite material as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase chromatography[J]. Anal. Chim. Acta, 2021,1143:181-188. doi: 10.1016/j.aca.2020.11.053

    15. [15]

      Okabe S, Oda K, Muto M, Sahoo Y V, Tanaka M. Speciation and determination of iron in aqueous solution and river water by high resolution electrospray ionization mass spectrometry[J]. J. Mol. Liq., 2021,329115532. doi: 10.1016/j.molliq.2021.115532

    16. [16]

      Pourjavid, Sehat, Arabieh, Yousefi, Hosseini, Rezaee, M. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese (Ⅱ) and ion (Ⅲ) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)1H-pyrazole-5-carboxylic acid on synthesized graphene oxide[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2014,35:370-378. doi: 10.1016/j.msec.2013.11.029

    17. [17]

      Zhang S A, Rong F L, Guo C P, Duan F H, He L H, Wang M H, Zhang Z H, Kang M M, Du M. Metal organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro[J]. Coord. Chem. Rev., 2021,439213948. doi: 10.1016/j.ccr.2021.213948

    18. [18]

      Wu D, Liu J, Jin J, Cheng J G, Wang M, Yang G P, Wang Y Y. New doubly interpenetrated MOF with[Zn4O] clusters and its doped isomorphic MOF: Sensing, dye, and gas adsorption capacity[J]. Cryst. Growth Des., 2019,19:6774-6783. doi: 10.1021/acs.cgd.9b01193

    19. [19]

      Daglar H, Gulbalkan H C, Avci G, Aksu G O, Altundal O F, Altintas C, Erucar I, Keskin S. Effect of metal-organic framework (MOF) database selection on the assessment of gas storage and separation potentials of MOFs[J]. Angew. Chem. Int. Ed., 2021,60:7828-7837. doi: 10.1002/anie.202015250

    20. [20]

      Hong D H, Shim H S, Ha J, Moon H R. MOF-on-MOF architectures: Applications in separation, catalysis, and sensing[J]. Bull. Korean Chem. Soc., 2021,42:956-969. doi: 10.1002/bkcs.12335

    21. [21]

      Guo T L, Mo K L, Zhang N N, Xiao L P C, Liu W L, Wen L L. Embedded homogeneous ultra fine Pd nanoparticles within MOF ultra-thin nanosheets for heterogeneous catalysis[J]. Dalton Trans., 2021,50:1774-1779. doi: 10.1039/D0DT03877F

    22. [22]

      Wang G D, Li Y Z, Shi W J, Zhang B, Hou L, Wang Y Y. A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water[J]. Sens. Actuator B Chem., 2021,331129377. doi: 10.1016/j.snb.2020.129377

    23. [23]

      Gao W, Huang H, Zhou A M, Wei H, Liu J P, Zhang X M. Three 3D LnⅢ MOFs based on a nitro functionalized biphenyltricarboxylate ligand: Syntheses, structures, and magnetic properties[J]. CrystEng-Comm, 2020,22:267-274. doi: 10.1039/C9CE01245A

    24. [24]

      Lv M Z, Zhou W, Tavakoli H, Bautista C, Xia J F, Wang Z H, Li X J. Aptamer functionalized metal organic frameworks (MOFs) for biosensing[J]. Biosens. Bioelectron., 2021,176112947. doi: 10.1016/j.bios.2020.112947

    25. [25]

      Ahmadi M, Ayyoubzadeh S M, Ghorbani-Bidkorbeh F, Shahhosseini S, Dadashzadeh S, Asadian E, Mosayebnia M, Siavashy S. An investigation of affecting factors on MOF characteristics for biomedical applications: A systematic review[J]. Heliyon, 2021,7e06914. doi: 10.1016/j.heliyon.2021.e06914

    26. [26]

      Guan L L, Jiang Z W, Cui Y J, Yang Y, Yang D R, Qian G D. An MOF based luminescent sensor array for pattern recognition and quantification of metal ions[J]. Adv. Opt. Mater., 2021,92002180. doi: 10.1002/adom.202002180

    27. [27]

      Safaei S, Wang J, Junk P C. Incorporation of thiazolothiazole fluorophores into a MOF structure: A highly luminescent Zn (Ⅱ) based MOF as a selective and reversible sensor for Cr2O72-and MnO4-anions[J]. J. Solid State Chem., 2021,294121762. doi: 10.1016/j.jssc.2020.121762

    28. [28]

      Gomez G E, Marin R, Neto A N C, Botas A M P, Ovens J, Kitos A A, Bernini M C, Carlos L D, Soler-Illia G J A A, Murugesu M. Tunable energy transfer process in heterometallic MOF materials based on 2, 6-naphthalenedicarboxylate: Solid-state lighting and near-infrared luminescence thermometry[J]. Chem. Mater., 2020,32:7458-7468. doi: 10.1021/acs.chemmater.0c02480

    29. [29]

      Wang X R, Huang Z, Du J, Wang X Z, Gu N, Tian X, Li Y, Liu Y Y, Huo J Z, Ding B. Hydrothermal preparation of five rareearth (Re=Dy, Gd, Ho, Pr, and Sm) luminescent cluster based coordination materials: The first MOFs based ratiometric fluorescent sensor for lysine and bifunctional sensing platform for insulin and Al3+[J]. Inorg. Chem., 2018,57:12885-12899. doi: 10.1021/acs.inorgchem.8b02123

    30. [30]

      Xue Z M, Jiang J Y, Ma M G, Li M F, Mu T C. Gadolinium-based metalorganic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis[J]. ACS Sustain. Chem. Eng., 2017,5:2623-2631.

    31. [31]

      LI H H, LIU L Z, FENG F. Facile synthesis of fluorescence carbon quantum dots and their application in detection of isorhamnetin in medicines[J]. Journal of Instrumental Analysis, 2020,34(9):514-519.  

    32. [32]

      Wang B H, Yan B. A turn-on fluorescence probe Eu3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine[J]. Talanta, 2020,208120438. doi: 10.1016/j.talanta.2019.120438

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    3. [3]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    4. [4]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    5. [5]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    10. [10]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    11. [11]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    12. [12]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    13. [13]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    14. [14]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    15. [15]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    16. [16]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    19. [19]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    20. [20]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

Metrics
  • PDF Downloads(4)
  • Abstract views(485)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return