Citation: Shuai XIAO, Kai-Wen CHEN, Ming-Hui ZHANG, Kai CHEN, Wei-Wei GE. Synthesis and fluorescence sensing properties of cucurbit[5]uril-based supramolecular self-assemblies incorporating naphthalene-2, 7-disulphonate as the structure-directing agent[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 585-595. doi: 10.11862/CJIC.2023.037 shu

Synthesis and fluorescence sensing properties of cucurbit[5]uril-based supramolecular self-assemblies incorporating naphthalene-2, 7-disulphonate as the structure-directing agent

  • Corresponding author: Kai CHEN, kaichen85@nuist.edu.cn
  • Received Date: 19 November 2022
    Revised Date: 14 February 2023

Figures(12)

  • Four new cucurbit[5]uril-based (Q[5]) supramolecular self-assemblies (Q[5]-SA), namely{[M (H2O)4(Q[5])]·(NDA)}·xH2O (M=Co (1), Ni (2), Zn (3)) and{[Cd2Cl2(H2O)4(Q[5])]·(NDA)}·13H2O (4), were synthesized by employing naphthalene-2, 7-disulphonate anion (2, 7-NDA2-) as the structure-directing agent to react with Q[5]and transition metal cations (Co2+, Ni2+, Zn2+, Cd2+) under hydrothermal conditions.Single-crystal X-ray diffraction (SC-XRD) results reveal that self-assemblies 1-3 are isostructural and the metal cations (Co2+, Ni2+, Zn2+) merely coordinate with the carbonyl groups from one portal of Q[5]to form simple coordination compounds, while the Cd2+ cation in selfassembly 4 is bound to both of the two portals of Q[5]to generate 1D coordination chains.In particular, the 2, 7NDA2- ligands in all self-assemblies are deprotonated to form organic anions 2, 7-NDA2-, which balanced the system charge.However, 2, 7-NDA2- fails to coordinate with the metal ions coordinated with Q[5], and these Q[5]-based coordination compounds are assembled into 3D supramolecular architectures through outer surface interactions of Q[5].Furthermore, the fluorescence sensing properties of 1 and 4 were investigated and the results indicated that they could both function as ratiometric fluorescence sensors for norfloxacin (NFX).
  • 加载中
    1. [1]

      Das R, Vecitis C D, Schulze A, Cao B, Ismail A F, Lu X, Chen J, Ramakrishna S. Recent advances in nanomaterials for water protection and monitoring[J]. Chem. Soc. Rev., 2017,46(22):6946-7020. doi: 10.1039/C6CS00921B

    2. [2]

      Fatta D, Achilleos A, Nikolaou A, Meriç S. Analytical methods for tracing pharmaceutical residues in water and wastewater[J]. TrAC-Trend. Anal. Chem., 2007,26(6):515-533. doi: 10.1016/j.trac.2007.02.001

    3. [3]

      Hong Y Q, Guo X, Chen G H, Zhou J W, Zou X M, Liao X, Hou T. Determination of five macrolide antibiotic residues in milk by micellar electrokinetic capillary chromatography with field amplified sample stacking[J]. J. Food Saf., 2018,38(1)e12382.

    4. [4]

      Ternes T A, Bonerz M, Herrmann N, Löffler D, Keller E, Lacida B B, Alder A C. Determination of pharmaceuticals, iodinated contrast media and musk fragrances in sludge by LC tandem MS and GC/MS[J]. J. Chromatogr. A, 2005,1067(1):213-223.

    5. [5]

      Li G, Wang T, Zhou S H, Wang J, Lv H, Han M L, Singh D P, Kumar A, Jin J C. New highly luminescent 3D Tb(Ⅲ)-MOF as selective sensor for antibiotics[J]. Inorg. Chem. Commun., 2021,130108756. doi: 10.1016/j.inoche.2021.108756

    6. [6]

      Shi L L, Liu M, Fang C, Zhu X F, Li H. A cucurbit[6]uril-based supramolecular assembly test strip for immediate detection of nitrofuran antibiotics in water[J]. CrystEngComm, 2020,22(44):7660-7667. doi: 10.1039/D0CE01294G

    7. [7]

      Shi L L, Liu M, Li H. A cucurbit[6]uril-based supramolecular assembly as a highly sensitive and quickly responsive luminescent sensor for the detection of fluoroquinolone antibiotics in simulated wastewater[J]. CrystEngComm, 2020,22(22):3753-3758. doi: 10.1039/D0CE00603C

    8. [8]

      Xu N, Zhang Q H, Hou B S, Cheng Q, Zhang G A. A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe(Ⅲ) ions, pesticides, and antibiotics with high selectivity and sensitivity[J]. Inorg. Chem., 2018,57(21):13330-13340. doi: 10.1021/acs.inorgchem.8b01903

    9. [9]

      Ying Y M, Tao C L, Yu M, Xiong Y, Guo C R, Liu X G, Zhao Z. In situ encapsulation of pyridine substituted tetraphenylethene cations in metal organic framework for the detection of antibiotics in aqueous medium[J]. J. Mater. Chem. C, 2019,7(27):8383-8388. doi: 10.1039/C9TC02229E

    10. [10]

      Tian J, Wang H, Zhang D W, Liu Y, Li Z T. Supramolecular organic frameworks (SOFs): Homogeneous regular 2D and 3D pores in water[J]. Natl. Sci. Rev., 2017,4(3):426-436. doi: 10.1093/nsr/nwx030

    11. [11]

      Chen K, Hua Z Y, Li R, Peng Y Y, Zhu Z Q, Zhao J L, Redshaw C. Assemblies of cucurbit[6]uril based coordination complexes with disulfonate ligands: From discrete complexes to oneand two-dimensional polymers[J]. CrystEngComm, 2021,23(2):465-481. doi: 10.1039/D0CE01456G

    12. [12]

      Ni X L, Xiao X, Cong H, Liang L L, Chen K, Cheng X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chem. Soc. Rev., 2013,429480. doi: 10.1039/c3cs60261c

    13. [13]

      Liu C, Xia Y, Tao Z, Ni X L. Host-guest interaction tailored cucurbit[6]uril based supramolecular organic frameworks (SOFs) for drug delivery[J]. Chin. Chem. Lett., 2022,33:1529-1532. doi: 10.1016/j.cclet.2021.08.108

    14. [14]

      Chen K, Hua Z Y, Zhao J L, Redshaw C, Tao Z. Construction of cucurbit[n]uril based supramolecular frameworks via host guest inclusion and functional properties thereof[J]. Inorg. Chem. Front., 2022,9:2753-2809.

    15. [15]

      Huang Y, Gao R H, Liu M, Chen L X, Ni X L, Xiao X, Cong H, Zhu Q J, Chen K, Tao Z. Cucurbit[n]uril based supramolecular frameworks assembled through outersurface interactions[J]. Angew. Chem. Int. Ed., 2021,60(28):15166-15191. doi: 10.1002/anie.202002666

    16. [16]

      Gao R H, Huang Y, Chen K, Tao Z. Cucurbit[n]uril/metal ion complexbased frameworks and their potential applications[J]. Coord. Chem. Rev., 2021,437213741. doi: 10.1016/j.ccr.2020.213741

    17. [17]

      Chen K, Hua Z Y, Zhao J L, Redshaw C, Tao Z. Construction of cucurbit[n]uril based supramolecular frameworks via host-guest inclusion and functional properties thereof[J]. Inorg. Chem. Front., 2022,9:2753-2809.

    18. [18]

      Day A I, Arnold A P. Method for synthesis cucurbiturils: WO 0068232. 2000-08

    19. [19]

      Sheldrick G M. SHELXS-97, Program for the solution of crystal structure. University of Göttingen, Germany, 1997.

    20. [20]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    21. [21]

      Chernikova E Y, Grachev A I, Peregudov A S, Fedorova O A, Fedorov Y V. Reversible ON-OFF switching of FRET effect in the functionalized CB[6] guest complex via photoisomerization[J]. Dyes Pigm., 2021,189109194. doi: 10.1016/j.dyepig.2021.109194

    22. [22]

      Qasem M, Kurdi E R, Patra D. Preparation of curcubit[6]uril functionalized CuO nanoparticles: A new nanosensing scheme based on fluorescence recovery after FRET for the label free determination of dopamine[J]. ChemistrySelect, 2020,5(15):4642-4649. doi: 10.1002/slct.202000595

    23. [23]

      Shen F F, Zhang Y M, Dai X Y, Zhang H Y, Liu Y. Alkyl-substituted cucurbit[6]uril bridged β-cyclodextrin dimer mediated intramolecular FRET behavior[J]. J. Org. Chem., 2020,85(9):6131-6136. doi: 10.1021/acs.joc.9b03513

    24. [24]

      Zeng Y, Shi Q K, Yang X R, Chatterjee S, Lv Z S, Liang F. Highly sensitive detection of CB[7] based on fluorescence resonance energy transfer between RhB and gold nanoparticles[J]. Curr. Nanosci., 2020,16(6):863-869.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(545)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return