Citation: Xiao-Liang WANG, Duo ZHANG, Xue-Mei SHI, Xin-Ye QIAO, Yan CHENG, Hao-Nan ZHAO, Lei-Ming CHANG, Zhen-Qiu YU, Chuan-Hui HUANG, Shao-Bin YANG. Preparation by Co metal-organic framework template and capacitive properties of NiCo-layered double hydroxide/nickel foam composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 607-616. doi: 10.11862/CJIC.2023.036 shu

Preparation by Co metal-organic framework template and capacitive properties of NiCo-layered double hydroxide/nickel foam composites

  • Corresponding author: Xiao-Liang WANG, ningke@163.com Shao-Bin YANG, lgdysb@163.com
  • Received Date: 12 June 2022
    Revised Date: 2 March 2023

Figures(9)

  • Using a two-step method, a Co metal-organic framework (Co-MOF) nanosheet array was grown in situ on nickel foam (NF), and then Co-MOF nanosheets were etched with different concentrations of Ni2+ ion solution to obtain NiCo layered double hydroxide (NiCo-LDH). NiCo-LDH/NF inherits the Co-MOF nano-sheet structure to form a primary nano-sheet array and a secondary nano-sheet fold on the surface of the primary nano-sheet. NiCo-LDH/NF obtained by etching in 2 mmol Ni (NO3)2·6H2O solution showed a small number of thin and folded secondary nano-sheets grown on the primary nano-sheet array, exhibited a high capacitance and high rate performance, had a specific capacitance of 7764.5 and 6098.2 mF·cm-2 at a current density of 5 and 20 mA·cm-2, and capacitance retention rate of 78.5%. After 5000 cycles at a current density of 20 A·g-1, the capacitance retention rate was 85.9%. The hybrid capacitor assembled by NiCo-LDH/NF and active carbon achieved an maximum energy density of 38.9 Wh·kg-1 and a maximum power density of 8000.0 W·kg-1.
  • 加载中
    1. [1]

      Wang Q, Yan J, Fan Z J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy Environ. Sci., 2016,9(3):729-762. doi: 10.1039/C5EE03109E

    2. [2]

      Zhao R D, Cui D, Dai J Q, Xiang J, Wu F F. Morphology controllable NiCo2O4 nanostructure for excellent energy storage device and overall water splitting[J]. Sustainable Mater. Technol., 2020,24e00151. doi: 10.1016/j.susmat.2020.e00151

    3. [3]

      Shi X, Key J L, Ji S, Linkov V, Liu F S, Wang H, Gai H J, Wang R F. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery[J]. Small, 2019,15(29)1802861. doi: 10.1002/smll.201802861

    4. [4]

      Jiang H, Zhao T, Li C Z, Ma J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors[J]. J. Mater. Chem., 2011,21(11):3818-3823. doi: 10.1039/c0jm03830j

    5. [5]

      Zhang J, Liu F, Cheng J P, Zhang X B. Binary nicke-lcobalt oxides electrode materials for high-performance supercapacitors: Influence of its composition and porous nature[J]. ACS Appl. Mater. Interfaces, 2015,7(32):17630-17640. doi: 10.1021/acsami.5b04463

    6. [6]

      Zhu Y Y, Huang C H, Li C, Fan M Q, Shu K Y, Chen H C. Strong synergetic electrochemistry between transition metals of α phase Ni-Co-Mn hydroxide contributed superior performance for hybrid supercapacitors[J]. J. Power Sources, 2019,412(36):559-567.

    7. [7]

      Zhao B T, Zhang L, Zhang Q B, Chen D C, Cheng Y, Deng X, Chen Y, Murphy R, Xiong X H, Song B, Wong C P, Wang M S, Liu M L. Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage[J]. Adv. Energy Mater., 2018,8(9)1702247. doi: 10.1002/aenm.201702247

    8. [8]

      Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS Appl. Mater. Interfaces, 2016,8(7):4585-4591. doi: 10.1021/acsami.5b10781

    9. [9]

      Zheng S S, Li Q, Xue H G, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage[J]. Natl. Sci. Rev., 2020,7(2):305-314. doi: 10.1093/nsr/nwz137

    10. [10]

      Wang Y Z, Liu Y X, Wang H Q, Liu W, Li Y, Zhang J F, Hou H, Yang J L. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Appl. Energy Mater., 2019,2(3)20632071.

    11. [11]

      Zhao C J, Ding Y Z, Zhu Z Q, Han S F, Zhao C H, Chen G R. One-pot construction of highly oriented Co-MOF nanoneedle arrays on Co foam for high-performance supercapacitor[J]. Nanotechnology, 2021,32(39)395606. doi: 10.1088/1361-6528/ac0d1b

    12. [12]

      RONG H R, WANG X M, WEI Y H, CHEN X J, LAI L F, LIU Q. A Layered Co-MOF based electrode material of supercapacitor with high-capacity[J]. Chinese J. Inorg. Chem., 2021,37(12):2227-2234. doi: 10.11862/CJIC.2021.230 

    13. [13]

      Zhao S F, Zeng L Z, Cheng G, Yu L, Zeng H Q. Ni/Co-based metalorganic frameworks as electrode material for high performance supercapacitors[J]. Chin. Chem. Lett., 2019,30(3):605-609. doi: 10.1016/j.cclet.2018.10.018

    14. [14]

      Yang Y, Huang X Y, Sheng C Y, Pan Y Y, Huang Y, Wang X H. In situ formation of MOFs derivatives CoSe2/Ni3Se4 nanosheets on MXene nanosheets for hybrid supercapacitor with enhanced electrochemical performance[J]. J. Alloy. Compd., 2022,920165908. doi: 10.1016/j.jallcom.2022.165908

    15. [15]

      Li Y, Shan Y Y, Pang H. Design and synthesis of nitrogen doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage[J]. Chin. Chem. Lett., 2020,31(9):2280-2286. doi: 10.1016/j.cclet.2020.03.027

    16. [16]

      Bai Y, Liu C L, Chen T T, Li W T, Zheng S S, Pi Y C, Luo Y S, Pang H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitor[J]. Angew. Chem. Int. Ed., 2021,60(48):25318-22. doi: 10.1002/anie.202112381

    17. [17]

      Wang W H, Yan H W, Anand U, Mirsaidov U. Visualizing the conversion of metal-organic framework nanoparticles into hollow layered double hydroxide nanocages[J]. J. Am. Chem. Soc., 2021,143(4)18541862.

    18. [18]

      Li Q, Guo H, Yue L G, Li L, Xue R, Liu H, Yao W Q, Xu M N, Yang W H, Yang W. A high-performance battery-supercapacitor hybrid device based on bimetallic hydroxides-nanoflowers derived from metal-organic frameworks[J]. Colloids Surf. A, 2020,600(24)124967.

    19. [19]

      Wang P Y, Li Y N, Li S D, Liao X Q, Sun S M. Water-promoted zeolitic imidazolate framework-67 transformation to Ni-Co layered double hydroxide hollow microsphere for supercapacitor electrode material[J]. J. Mater. Sci.-Mater. Electron., 2017,28(13):9221-9227. doi: 10.1007/s10854-017-6656-5

    20. [20]

      Xiao Z Y, Mei Y J, Yuan S, Mei H, Xu B, Bao Y X, Fan L L, Kang W P, Dai F N, Wang R M, Wang L, Hu S Q, Sun D F, Zhou H C. Controlled hydrolysis of metal-organic frameworks: Hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors[J]. ACS Nano, 2019,13(6):7024-7030. doi: 10.1021/acsnano.9b02106

    21. [21]

      Han B, Cheng G, Zhang E Y, Zhang L J, Wang Z K. Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors[J]. Electrochim. Acta, 2018,263:391-399. doi: 10.1016/j.electacta.2017.12.175

    22. [22]

      Yang W D, Zhao R D, Xiang J, Loy S, Di Y F, Li J, Li M T, Ma D M, Wu F F. 3D hierarchical ZnCo2S4@Ni(OH)2 nanowire arrays with excellent flexible energy storage and electrocatalytic performance[J]. J. Colloid Interface Sci., 2022,626:866-878. doi: 10.1016/j.jcis.2022.07.020

    23. [23]

      Yang W D, Zhao R D, Guo F Y, Xiang J, Loy S, Liu L, Dai J Y, Wu F F. Interface engineering of hybrid ZnCo2O4@Ni2.5Mo6S6.7 structures for flexible energy storage and alkaline water splitting[J]. Chem. Eng. J., 2022,454140458.

    24. [24]

      Wu F M, Gao J P, Zhai X G, Xie M H, Gao C J, Sun Y, Liu Y, Yan J. Hierarchical zinc cobalt sulfide flowers grown on nickel foam as binder-free electrodes for high-performance asymmetric supercapacitors[J]. Electrochim. Acta, 2019,319(21):859-868.

    25. [25]

      Liu G C, Song X Z, Zhang S P, Chen X, Liu S H, Meng Y L, Tan Z Q. Hierarchical CuO@ZnCo-OH core-shell heterostructure on copper foam as three-dimensional binder-free electrodes for high performance asymmetric supercapacitors[J]. J. Power Sources, 2020,465(1)228239.

    26. [26]

      Jin T, Han Q Q, Jiao L F. Binder-free electrodes for advanced sodiumion batteries[J]. Adv. Mater., 2020,32(3)1806304. doi: 10.1002/adma.201806304

    27. [27]

      Wang P, Zhou H, Meng C F, Wang Z T, Akhtara K, Yuan A H. Cyanometallic framework-derived hierarchical Co3O4-NiO/graphene foam as high-performance binder-free electrodes for supercapacitors[J]. Chem. Eng. J., 2019,369(32):57-63.

    28. [28]

      Yan S X, Luo S H, Feng J, Li P W, Guo R, Wang Q, Zhang Y H, Liu Y G, Bao S. Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor[J]. Chem. Eng. J., 2020,381(4)122695.

    29. [29]

      Zhang J C, Xiao K S, Zhang T C, Qian G, Wang Y, Feng Y. Porous nickel-cobalt layered double hydroxide nanoflake array derived from ZIF-L-Co nanoflake array for battery-type electrodes with enhanced energy storage performance[J]. Electrochim. Acta, 2017,226:113-120. doi: 10.1016/j.electacta.2016.12.195

    30. [30]

      Li X P, Wu C X, Zhu Z R, Lu Z G, Zhao Y R, Zhang X D, Zhou J Y, Zhang Z X, Pan X J, Xie E Q. Decoration of ultrathin porous zeolitic imidazolate frameworks on zinc-cobalt layered double hydroxide nanosheet arrays for ultrahigh-performance supercapacitors[J]. J. Power Sources, 2020,450227689. doi: 10.1016/j.jpowsour.2019.227689

    31. [31]

      Chu H L, Zhu Y, Fang T T, Hua J Q, Qiu S J, Liu H D, Qin L Y, Wei Q H, Zou Y J, Xiang C L, Xu F, Sun L X. Solvothermal synthesis of cobalt nickel layered double hydroxides with a three-dimensional nano-petal structure for high-performance supercapacitors[J]. Sustain. Energ. Fuels, 2020,4(1):337-346. doi: 10.1039/C9SE00712A

    32. [32]

      Zang Y, Luo H, Zhang H, Xue H G. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors[J]. ACS Appl. Energy Mater., 2021,4(2):1189-1198. doi: 10.1021/acsaem.0c02465

    33. [33]

      Zhou M M, Xu F K, Zhang S, Liu B D, Yang Y M, Chen K, Qi J W. Low consumption design of hollow NiCo-LDH nanoflakes derived from mofs for high-capacity electrode materials[J]. J. Mater. Sci.-Mater. Electron., 2020,31(4):3281-3288. doi: 10.1007/s10854-020-02876-z

    34. [34]

      Fang G Z, Zhou J, Liang C W, Pan A Q, Zhang C, Tang Y, Tan X P, Liu J, Liang S Q. MOFs nanosheets derived porous metal oxide-coated three dimensional substrates for lithium-ion battery applications[J]. Nano Energy, 2016,26:57-65. doi: 10.1016/j.nanoen.2016.05.009

    35. [35]

      LEI N, MA P P. Research on application of Ni-Co LDHs nanosheet arrays in supercapacitor electrode[J]. Journal of Zhejiang Sci Tech University (Natural Sciences Edition), 2020,43(6):790-796. doi: 10.3969/j.issn.1673-3851(n).2020.06.008

    36. [36]

      Ling X T, Du F, Zhang Y T, Shen Y, Li T, Alsaedi A, Hayat T, Zhou Y, Zou Z G. Preparation of an Fe2NiMOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction[J]. RSC Adv., 2019,9(57):33558-3356. doi: 10.1039/C9RA07499F

    37. [37]

      Jiang Z, Li Z P, Qin Z H, Sun H Y, Jiao X L, Chen D R. LDH nano-cages synthesized with MOF templates and their high performance as supercapacitors[J]. Nanoscale, 2013,5(23):11770-11775. doi: 10.1039/c3nr03829g

    38. [38]

      Hu X S, Hu H P, Li C, Li T, Lou X B, Chen Q, Hu B W. Cobalt-based metal organic framework with superior lithium anodic performance[J]. J. Solid State Chem., 2016,242(9):71-76.

    39. [39]

      Mehek R, Iqbal N, Noor T, Nasir H, Mehmood Y, Ahmed S. Novel Co-MOF/graphene oxide electrocatalyst for methanol oxidation[J]. Electrochim. Acta, 2017,255(42):195-204.

    40. [40]

      Han X Y, Li J, Lu J L, Luo S, Wan J, Li B X, Hu C G, Cheng X L. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage[J]. Nano Energy, 2021,86106079. doi: 10.1016/j.nanoen.2021.106079

    41. [41]

      Guo Y Q, Hong X F, Wang Y, Li Q, Meng J S, Dai R T, Liu X, He L, Mai L Q. Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor[J]. Adv. Funct. Mater., 2019,29(24)1809004. doi: 10.1002/adfm.201809004

    42. [42]

      Yilmaz G, Yam K M, Zhang C, Fan H J, Ho G W. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance[J]. Adv. Mater., 2017,29(26)1606814. doi: 10.1002/adma.201606814

    43. [43]

      Wang W C, Zhang N, Shi Z Y, Ye Z R, Gao Q Y, Zhi M J, Hong Z L. Preparation of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode[J]. Chem. Eng. J., 2018,338:55-61. doi: 10.1016/j.cej.2018.01.024

    44. [44]

      Yi T F, Mei J, Guan B L, Cui P, Luo S H, Xie Y, Liu Y G. Construction of spherical NiO@MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor[J]. Ceram. Int., 2020,46(1):421-429. doi: 10.1016/j.ceramint.2019.08.278

    45. [45]

      Niu H T, Zhang Y, Liu Y, Xin N, Shi W D. NiCo-layered doublehydroxide and carbon nanosheets microarray derived from MOFs for high performance hybrid supercapacitors[J]. J. Colloid Interface Sci., 2019,539:545-552. doi: 10.1016/j.jcis.2018.12.095

    46. [46]

      Mei H, Mei Y J, Zhang S Y, Xiao Z Y, Xu B, Zhang H B, Fan L L, Huang Z D, Kang W P, Sun D F. Bimetallic-MOF derived accordionlike ternary composite for high-performance supercapacitors[J]. Inorg. Chem., 2018,57(17):10953-10960. doi: 10.1021/acs.inorgchem.8b01574

    47. [47]

      Kandula S, Shrestha K R, Rajeshkhanna G, Kim N H, Lee J H. Kirkendall growth and Ostwald ripening induced hierarchical morphology of Ni-Co LDH/MMoSx(M=Co, Ni, and Zn) heteronanostructures as advanced electrode materials for asymmetric solid-state supercapacitors[J]. ACS Appl. Mater. Interfaces, 2019,11(12)1155511567.

    48. [48]

      Deng T, Lu Y, Zhang W, Sui M L, Shi X Y, Wang D, Zheng W T. Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes[J]. Adv. Energy Mater., 2018,8(7)1702294. doi: 10.1002/aenm.201702294

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(7)
  • Abstract views(1067)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return