Citation: Tie-Ping CAO, Yue-Jun LI, Da-Wei SUN. Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 699-708. doi: 10.11862/CJIC.2023.030 shu

Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic performance

  • Corresponding author: Yue-Jun LI, bc640628@163.com
  • Received Date: 21 October 2022
    Revised Date: 17 February 2023

Figures(10)

  • In this work, we prepared double heterojunction Bi2Ti2O7/TiO2/Bi4Ti3O12 composite nanofibers by employing electrospun TiO2 nanofibers as the substrate, bismuth nitrate as the bismuth source, and potassium hydroxide as the mineralizing agent.Through a series of tests such as X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectrum (UV-Vis DRS), the phase composition, micromorphology, and optical properties of the Bi2Ti2O7/TiO2/Bi4Ti3O12 catalyst were analyzed.The results showed that the TiO2 changed type Ⅰ heterojunction into multi-heterojunction integrating two type Ⅱ heterojunctions.Photocatalytic tests demonstrated the activity of as-constructed multi-heterojunction was higher than that of single type Ⅰ or Ⅱ heterojunctions, respectively, where photogenerated electrons were accumulated on the surface of TiO2 and photogenerated holes were accumulated on Bi2Ti2O7 and Bi4Ti3O12, respectively.The synergistic effect of Bi2Ti2O7, Bi4Ti3O12, and TiO2 effectively improves the visible light absorption capacity, changes the transmission path of photo-generated carriers, and reduces the recombination probability of photogenerated electron-hole pairs, thereby obtaining the efficient photocatalytic degradation of CH3CHO.The acetaldehyde degradation rate of Bi2Ti2O7/TiO2/Bi4Ti3O12 reached 87.1% under visible light illumination for 8 h.
  • 加载中
    1. [1]

      Wang H J, Li X, Zhao X X, Li C Y, Song X H, Zhang P, Huo P W, Li X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies[J]. Chin. J. Catal., 2022,43(2):178-214. doi: 10.1016/S1872-2067(21)63910-4

    2. [2]

      Qu Z J, Jing Z Y, Chen X M, Wang Z X, Ren H F, Huang L H. Preparation and photocatalytic performance study of dual Z scheme Bi2Zr2O7/g-C3N4/Ag3PO4 for removal of antibiotics by visible-light[J]. J. Environ. Sci., 2023,125:349-360. doi: 10.1016/j.jes.2022.01.010

    3. [3]

      Yu C L, Chen F C, Zeng D B, Xie Y, Zhou W Q, Liu Z, Wei L F, Yang K, Li D H. A facile phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties[J]. Nanoscale, 2019,11(16):7720-7733. doi: 10.1039/C9NR00709A

    4. [4]

      Wang K X, Zhang Y S, Liu L N, Lu N, Zhang Z Y. BiOBr nanosheetsdecorated TiO2 nanofibers as hierarchical p-n heterojunctions photocatalysts for pollutant degradation[J]. J. Mater. Sci., 2019,54(11)84268435.

    5. [5]

      Zhang Z Y, Xue X L, Chen X Y. A novel g-C3N4 nanosheet/Ag3PO4/α Bi2O3 ternary dual Z scheme heterojunction with increased light absorption and expanded specific surface area for efficient photocatalytic removal of TC[J]. Dalton Trans., 2022,51(20):8015-8027. doi: 10.1039/D2DT00737A

    6. [6]

      Li X, Yu J G, Jaroniec M, Chen X B. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chem. Rev., 2019,119(6):3962-4179. doi: 10.1021/acs.chemrev.8b00400

    7. [7]

      ZHANG Z, ZOU C T, YANG Z Y, YANG S J. One-step preparation and photocatalytic activity of Bi2MoO6/CoMoO4 embroidery ball structure[J]. Chinese J. Inorg. Chem., 2020,36(8):1446-1456.  

    8. [8]

      Li X B, Xiong J, Xu Y, Feng Z J, Huang J T. Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C TiO2 direct Z scheme heterojunctions[J]. Chin. J. Catal., 2019,40:424-433. doi: 10.1016/S1872-2067(18)63183-3

    9. [9]

      Wu Z, Li X Q, Yu C L, Fang L, Zhou W Q, Wei L F. Construct interesting CuS/TiO2 architectures for effective removal of Cr (Ⅵ) in simulated astewater via the strong synergistic adsorption and photocatalytic process[J]. Sci. Total Environ., 2021,796148941. doi: 10.1016/j.scitotenv.2021.148941

    10. [10]

      HU Y Y, LÜ R, ZHANG W L, LIU J X, LI R, FAN C M. One-pot electrochemical preparation and performance of BiOCl0.5Br0.5/BiPO4 double-layer heterojunction thin film photocatalyst[J]. Chinese J. Inorg. Chem., 2022,38(8):1487-1498.  

    11. [11]

      Yuan X X, Yang J Y, Yao Y Y, Shen H, Meng Y, Xie B, Ni Z M, Xia S J. Preparation, characterization and mechanism of 0D/2D Cu2O/BiOCl Z-scheme heterojunction for efficient photocatalytic degradation of tetracycline[J]. Sep. Purif. Technol., 2022,291120965. doi: 10.1016/j.seppur.2022.120965

    12. [12]

      Chen F Y, Yu C L, Wei L F, Fan Q Z, Ma F, Zeng J L, Yi J H, Yang K, Ji H B. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr (Ⅵ) ions[J]. Sci. Total Environ., 2020,706136026. doi: 10.1016/j.scitotenv.2019.136026

    13. [13]

      Hou H L, Wang L, Gao F M, Wei G D, Tang B, Yang W Y, Wu T. General strategy for fabricating thoroughly mesoporous nanofibers[J]. J. Am. Chem. Soc., 2014,136(48):16716-16719. doi: 10.1021/ja508840c

    14. [14]

      Liu J, Li D M, Liu X F, Zhou J, Zhao H, Wang N, Cui Z M, Bai J, Zhao Y. TiO2/g C3N4 heterojunction hollow porous nanofibers as superior visible-light photocatalysts for H2 evolution and dye degradation[J]. New J. Chem., 2021,45:22123-22132. doi: 10.1039/D1NJ04390K

    15. [15]

      Cao L T, Song J, Si Y, Yu J Y, Ding B. Thorn-like flexible Ag2C2O4/TiO2 nanofibers as hierarchical heterojunction photocatalysts for efficient visible-light-driven bacteria-killing[J]. J. Colloid Interface Sci., 2021,560:681-689.

    16. [16]

      Tao R, Li X H, Li X W, Shao C L, Liu Y C. TiO2/SrTiO3/g C3N4 ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation[J]. Nanoscale, 2020,15:8320-8329.

    17. [17]

      Hou H L, Wang L, Gao F M, Yang X F, Yang W Y. BiVO4@TiO2 core shell hybrid mesoporous nanofibers towards efficient visible light-driven photocatalytic hydrogen production[J]. J. Mater. Chem. C, 2019,7:7858-7864. doi: 10.1039/C9TC02480H

    18. [18]

      Niu S Y, Zhang R Y, Zhang X C, Xiang J M, Guo C F. Morphologydependent photocatalytic performance of Bi4Ti3O12[J]. Ceram. Int., 2020,46(5):6782-6786. doi: 10.1016/j.ceramint.2019.11.169

    19. [19]

      Wang Y, Zheng Z S, Li Y L, Cao L G, Jia P G, Ye Z B. Bi4Ti3O12/CdS nanocomposites enhance the photocatalytic degradation performance[J]. Nano, 2022,17(1)2250008. doi: 10.1142/S1793292022500084

    20. [20]

      Niu S Y, Zhang R Y, Zhang Z Y, Zheng J M, Jiao Y, Guo C F. In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity[J]. Inorg. Chem. Front., 2019,6791798.

    21. [21]

      Liu Y B, Zhu G Q, Gao J Z, Hojamberdiev M, Lu H G, Zhu R L, Wei X M, Liu P. A novel CeO2/Bi4Ti3O12 composite heterojunction structure with an enhanced photocatalytic activity for bisphenol A[J]. J. Alloy. Compd., 2016,688:487-496. doi: 10.1016/j.jallcom.2016.07.054

    22. [22]

      Li Y J, Cao T P, Mei Z M, Li X P, Sun D W. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. J. Phys. Chem. Solids, 2020,142109457. doi: 10.1016/j.jpcs.2020.109457

    23. [23]

      Shi H F, Tan H Q, Zhu W B, Sun Z C, Ma Y J, Wang E B. Electrospun Cr-doped Bi4Ti3O12/Bi2Ti2O7 heterostructure fibers with enhanced visible light photocatalytic properties[J]. J. Mater. Chem. A, 2015,3:6586-6591. doi: 10.1039/C4TA06736C

    24. [24]

      Gu H S, Hu Z G, Hu Y M, Yuan Y, You J, Zou W D. The structure and photoluminescence of Bi4Ti3O12 nanoplates synthesized by hydrothermal method[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2008,315:294-298. doi: 10.1016/j.colsurfa.2007.08.010

    25. [25]

      Juang Y D, Kuo H T. Hydrothermal synthesis of sodium potassium bismuth titanates[J]. Ferroelectrics, 2015,478(1):73-80. doi: 10.1080/00150193.2015.1011458

    26. [26]

      Yan J Q, Wu G J, Guan N J, Li L D, Li Z X, Cao X Z. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Phys. Chem. Chem. Phys., 2013,15(26):10978-10988. doi: 10.1039/c3cp50927c

    27. [27]

      He Q, Ni Y H, Ye S Y. Heterostructrued Bi2O3/Bi2MoO6 nanocomposites: Simple construction and enhanced visible-light photocatalytic performance[J]. RSC Adv., 2017,7:27089-27099. doi: 10.1039/C7RA02760E

    28. [28]

      Zhang Z, Zou C T, Yang S J, Yang Z Y, Yang Y. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation[J]. Chem. Eng. J., 2021,410128430. doi: 10.1016/j.cej.2021.128430

    29. [29]

      ZOU C T, ZHANG Z, LIAO W J, YANG S J. Enhancement of photocatalytic performance of layered Bi2MoO6 by ferroelectric polarization[J]. Chinese J. Inorg. Chem., 2020,36(9):1717-1727.  

    30. [30]

      Šutka A, Dobelin N, Joost U, Smits K, Kisand V, Maiorov M, Kooser K, Kook M, Duarte R F, Käämbre T. Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation[J]. J. Environ. Chem. Eng., 2017,5(4)34553462.

    31. [31]

      Zhang G X, Zhang H M, Wang R F, Liu H X, He Q C, Zhang X J, Li Y J. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity[J]. J. Mater. Sci.-Mater. Electron., 2021,32(6)73077318.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    18. [18]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    19. [19]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(7)
  • Abstract views(1010)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return