Citation: Tie-Ping CAO, Yue-Jun LI, Da-Wei SUN. Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 699-708. doi: 10.11862/CJIC.2023.030 shu

Fabrication of Bi2Ti2O7/TiO2/Bi4Ti3O12 multi-heterojunction and the enhanced visible photocatalytic performance

  • Corresponding author: Yue-Jun LI, bc640628@163.com
  • Received Date: 21 October 2022
    Revised Date: 17 February 2023

Figures(10)

  • In this work, we prepared double heterojunction Bi2Ti2O7/TiO2/Bi4Ti3O12 composite nanofibers by employing electrospun TiO2 nanofibers as the substrate, bismuth nitrate as the bismuth source, and potassium hydroxide as the mineralizing agent.Through a series of tests such as X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectrum (UV-Vis DRS), the phase composition, micromorphology, and optical properties of the Bi2Ti2O7/TiO2/Bi4Ti3O12 catalyst were analyzed.The results showed that the TiO2 changed type Ⅰ heterojunction into multi-heterojunction integrating two type Ⅱ heterojunctions.Photocatalytic tests demonstrated the activity of as-constructed multi-heterojunction was higher than that of single type Ⅰ or Ⅱ heterojunctions, respectively, where photogenerated electrons were accumulated on the surface of TiO2 and photogenerated holes were accumulated on Bi2Ti2O7 and Bi4Ti3O12, respectively.The synergistic effect of Bi2Ti2O7, Bi4Ti3O12, and TiO2 effectively improves the visible light absorption capacity, changes the transmission path of photo-generated carriers, and reduces the recombination probability of photogenerated electron-hole pairs, thereby obtaining the efficient photocatalytic degradation of CH3CHO.The acetaldehyde degradation rate of Bi2Ti2O7/TiO2/Bi4Ti3O12 reached 87.1% under visible light illumination for 8 h.
  • 加载中
    1. [1]

      Wang H J, Li X, Zhao X X, Li C Y, Song X H, Zhang P, Huo P W, Li X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies[J]. Chin. J. Catal., 2022,43(2):178-214. doi: 10.1016/S1872-2067(21)63910-4

    2. [2]

      Qu Z J, Jing Z Y, Chen X M, Wang Z X, Ren H F, Huang L H. Preparation and photocatalytic performance study of dual Z scheme Bi2Zr2O7/g-C3N4/Ag3PO4 for removal of antibiotics by visible-light[J]. J. Environ. Sci., 2023,125:349-360. doi: 10.1016/j.jes.2022.01.010

    3. [3]

      Yu C L, Chen F C, Zeng D B, Xie Y, Zhou W Q, Liu Z, Wei L F, Yang K, Li D H. A facile phase transformation strategy for fabrication of novel Z-scheme ternary heterojunctions with efficient photocatalytic properties[J]. Nanoscale, 2019,11(16):7720-7733. doi: 10.1039/C9NR00709A

    4. [4]

      Wang K X, Zhang Y S, Liu L N, Lu N, Zhang Z Y. BiOBr nanosheetsdecorated TiO2 nanofibers as hierarchical p-n heterojunctions photocatalysts for pollutant degradation[J]. J. Mater. Sci., 2019,54(11)84268435.

    5. [5]

      Zhang Z Y, Xue X L, Chen X Y. A novel g-C3N4 nanosheet/Ag3PO4/α Bi2O3 ternary dual Z scheme heterojunction with increased light absorption and expanded specific surface area for efficient photocatalytic removal of TC[J]. Dalton Trans., 2022,51(20):8015-8027. doi: 10.1039/D2DT00737A

    6. [6]

      Li X, Yu J G, Jaroniec M, Chen X B. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chem. Rev., 2019,119(6):3962-4179. doi: 10.1021/acs.chemrev.8b00400

    7. [7]

      ZHANG Z, ZOU C T, YANG Z Y, YANG S J. One-step preparation and photocatalytic activity of Bi2MoO6/CoMoO4 embroidery ball structure[J]. Chinese J. Inorg. Chem., 2020,36(8):1446-1456.  

    8. [8]

      Li X B, Xiong J, Xu Y, Feng Z J, Huang J T. Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C TiO2 direct Z scheme heterojunctions[J]. Chin. J. Catal., 2019,40:424-433. doi: 10.1016/S1872-2067(18)63183-3

    9. [9]

      Wu Z, Li X Q, Yu C L, Fang L, Zhou W Q, Wei L F. Construct interesting CuS/TiO2 architectures for effective removal of Cr (Ⅵ) in simulated astewater via the strong synergistic adsorption and photocatalytic process[J]. Sci. Total Environ., 2021,796148941. doi: 10.1016/j.scitotenv.2021.148941

    10. [10]

      HU Y Y, LÜ R, ZHANG W L, LIU J X, LI R, FAN C M. One-pot electrochemical preparation and performance of BiOCl0.5Br0.5/BiPO4 double-layer heterojunction thin film photocatalyst[J]. Chinese J. Inorg. Chem., 2022,38(8):1487-1498.  

    11. [11]

      Yuan X X, Yang J Y, Yao Y Y, Shen H, Meng Y, Xie B, Ni Z M, Xia S J. Preparation, characterization and mechanism of 0D/2D Cu2O/BiOCl Z-scheme heterojunction for efficient photocatalytic degradation of tetracycline[J]. Sep. Purif. Technol., 2022,291120965. doi: 10.1016/j.seppur.2022.120965

    12. [12]

      Chen F Y, Yu C L, Wei L F, Fan Q Z, Ma F, Zeng J L, Yi J H, Yang K, Ji H B. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr (Ⅵ) ions[J]. Sci. Total Environ., 2020,706136026. doi: 10.1016/j.scitotenv.2019.136026

    13. [13]

      Hou H L, Wang L, Gao F M, Wei G D, Tang B, Yang W Y, Wu T. General strategy for fabricating thoroughly mesoporous nanofibers[J]. J. Am. Chem. Soc., 2014,136(48):16716-16719. doi: 10.1021/ja508840c

    14. [14]

      Liu J, Li D M, Liu X F, Zhou J, Zhao H, Wang N, Cui Z M, Bai J, Zhao Y. TiO2/g C3N4 heterojunction hollow porous nanofibers as superior visible-light photocatalysts for H2 evolution and dye degradation[J]. New J. Chem., 2021,45:22123-22132. doi: 10.1039/D1NJ04390K

    15. [15]

      Cao L T, Song J, Si Y, Yu J Y, Ding B. Thorn-like flexible Ag2C2O4/TiO2 nanofibers as hierarchical heterojunction photocatalysts for efficient visible-light-driven bacteria-killing[J]. J. Colloid Interface Sci., 2021,560:681-689.

    16. [16]

      Tao R, Li X H, Li X W, Shao C L, Liu Y C. TiO2/SrTiO3/g C3N4 ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation[J]. Nanoscale, 2020,15:8320-8329.

    17. [17]

      Hou H L, Wang L, Gao F M, Yang X F, Yang W Y. BiVO4@TiO2 core shell hybrid mesoporous nanofibers towards efficient visible light-driven photocatalytic hydrogen production[J]. J. Mater. Chem. C, 2019,7:7858-7864. doi: 10.1039/C9TC02480H

    18. [18]

      Niu S Y, Zhang R Y, Zhang X C, Xiang J M, Guo C F. Morphologydependent photocatalytic performance of Bi4Ti3O12[J]. Ceram. Int., 2020,46(5):6782-6786. doi: 10.1016/j.ceramint.2019.11.169

    19. [19]

      Wang Y, Zheng Z S, Li Y L, Cao L G, Jia P G, Ye Z B. Bi4Ti3O12/CdS nanocomposites enhance the photocatalytic degradation performance[J]. Nano, 2022,17(1)2250008. doi: 10.1142/S1793292022500084

    20. [20]

      Niu S Y, Zhang R Y, Zhang Z Y, Zheng J M, Jiao Y, Guo C F. In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity[J]. Inorg. Chem. Front., 2019,6791798.

    21. [21]

      Liu Y B, Zhu G Q, Gao J Z, Hojamberdiev M, Lu H G, Zhu R L, Wei X M, Liu P. A novel CeO2/Bi4Ti3O12 composite heterojunction structure with an enhanced photocatalytic activity for bisphenol A[J]. J. Alloy. Compd., 2016,688:487-496. doi: 10.1016/j.jallcom.2016.07.054

    22. [22]

      Li Y J, Cao T P, Mei Z M, Li X P, Sun D W. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. J. Phys. Chem. Solids, 2020,142109457. doi: 10.1016/j.jpcs.2020.109457

    23. [23]

      Shi H F, Tan H Q, Zhu W B, Sun Z C, Ma Y J, Wang E B. Electrospun Cr-doped Bi4Ti3O12/Bi2Ti2O7 heterostructure fibers with enhanced visible light photocatalytic properties[J]. J. Mater. Chem. A, 2015,3:6586-6591. doi: 10.1039/C4TA06736C

    24. [24]

      Gu H S, Hu Z G, Hu Y M, Yuan Y, You J, Zou W D. The structure and photoluminescence of Bi4Ti3O12 nanoplates synthesized by hydrothermal method[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2008,315:294-298. doi: 10.1016/j.colsurfa.2007.08.010

    25. [25]

      Juang Y D, Kuo H T. Hydrothermal synthesis of sodium potassium bismuth titanates[J]. Ferroelectrics, 2015,478(1):73-80. doi: 10.1080/00150193.2015.1011458

    26. [26]

      Yan J Q, Wu G J, Guan N J, Li L D, Li Z X, Cao X Z. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Phys. Chem. Chem. Phys., 2013,15(26):10978-10988. doi: 10.1039/c3cp50927c

    27. [27]

      He Q, Ni Y H, Ye S Y. Heterostructrued Bi2O3/Bi2MoO6 nanocomposites: Simple construction and enhanced visible-light photocatalytic performance[J]. RSC Adv., 2017,7:27089-27099. doi: 10.1039/C7RA02760E

    28. [28]

      Zhang Z, Zou C T, Yang S J, Yang Z Y, Yang Y. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation[J]. Chem. Eng. J., 2021,410128430. doi: 10.1016/j.cej.2021.128430

    29. [29]

      ZOU C T, ZHANG Z, LIAO W J, YANG S J. Enhancement of photocatalytic performance of layered Bi2MoO6 by ferroelectric polarization[J]. Chinese J. Inorg. Chem., 2020,36(9):1717-1727.  

    30. [30]

      Šutka A, Dobelin N, Joost U, Smits K, Kisand V, Maiorov M, Kooser K, Kook M, Duarte R F, Käämbre T. Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation[J]. J. Environ. Chem. Eng., 2017,5(4)34553462.

    31. [31]

      Zhang G X, Zhang H M, Wang R F, Liu H X, He Q C, Zhang X J, Li Y J. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity[J]. J. Mater. Sci.-Mater. Electron., 2021,32(6)73077318.

  • 加载中
    1. [1]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    7. [7]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    8. [8]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    9. [9]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    11. [11]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    17. [17]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(10)
  • Abstract views(1985)
  • HTML views(576)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return