Citation: Nan-Nan CHEN, Meng-Jia WANG, Yu-Feng QIAN, Meng-Ke ZHENG, Peng XU. Activated magnetic porous carbon microspheres: Preparation based on electrostatic spraying and adsorption on methylene blue[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 575-584. doi: 10.11862/CJIC.2023.025 shu

Activated magnetic porous carbon microspheres: Preparation based on electrostatic spraying and adsorption on methylene blue

  • Corresponding author: Peng XU, xupeng@njfu.edu.cn
  • Received Date: 14 October 2022
    Revised Date: 15 February 2023

Figures(7)

  • Activated magnetic porous carbon microspheres (A‐Fe3O4/C) based on chitosan (CS) were prepared using a two‐step synthesis method. The prepared A‐Fe3O4/C was employed as an adsorbent to remove the methylene blue (MB) from water. First, magnetic microspheres Fe3O4/CS were prepared through electrostatic spraying with CS and FeCl2/FeCl3 as the precursor. Subsequently, Fe3O4/CS was converted into A‐Fe3O4/C using a combination method of high‐temperature carbonization and alkali activation. The obtained magnetic microspheres were systematically characterized by scanning electron microscopy, Fourier transform infrared, and specific surface area analyzer, and several major factors of the adsorption‐based removal were studied (e.g., pH of the solution, adsorbent dosage, temperature, contact time, as well as alkali activator). The removal efficiency was significantly dependent on the pH of the solution, and high pH values facilitated the removal of MB from water. The adsorption to MB was consistent with the pseudo ‐ second ‐ order kinetic equation, and the adsorption process was expressed using the Langmuir isotherm model. The maximum adsorption capacity of MB was examined as 300.6 mg·g-1. Notably, the synthesized adsorbent could be effectively regenerated and repeatedly used without significant capacity loss after six cycles.
  • 加载中
    1. [1]

      Wang H, Shao Y, Mei S L, Lu Y, Zhang M, Sun J K, Matyjaszewski K, Antonietti M, Yuan J Y. Polymer-derived heteroatom-doped porous carbon materials[J]. Chem. Rev., 2020,120(17):9363-9419. doi: 10.1021/acs.chemrev.0c00080

    2. [2]

      Kannan C, Muthuraja K, Devi M R. Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption[J]. J. Hazard. Mater., 2013,244:10-20.

    3. [3]

      Zhang X T, Liu H W, Taguchi T, Meng Q B, Sato O, Fujishima A. Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO 2 films[J]. Sol. Energy Mater. Sol. Cells, 2003,81(2):197-203.

    4. [4]

      Errais E, Duplay J, Elhabiri M, Elhabiri M, Khodja M, Ocampo R, Baltenweck-Guyot R, Darragi F. Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2012,403:69-78. doi: 10.1016/j.colsurfa.2012.03.057

    5. [5]

      Zhu Y F, Zhang L X, Schappacher F M, Pöttgen R, Shi J L, Kaskel S. Synthesis of magnetically separable porous carbon microspheres and their adsorption properties of phenol and nitrobenzene from aqueous solution[J]. J. Phys. Chem. C, 2008,112(23):8623-8628. doi: 10.1021/jp8010684

    6. [6]

      Luo X G, Lei X J, Cai N, Xie X P, Xue Y A, Yu F Q. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon[J]. ACS Sustain. Chem. Eng., 2016,4(7):3960-3969. doi: 10.1021/acssuschemeng.6b00790

    7. [7]

      Liu J, Qiao S Z, Hu Q H, Lu G Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications[J]. Small, 2011,7(4):425-443. doi: 10.1002/smll.201001402

    8. [8]

      Ma J, Ma Y, Yu F. A novel one-pot route for large-scale synthesis of novel magnetic CNTs/Fe@C hybrids and their applications for binary dye removal[J]. ACS Sustain. Chem. Eng., 2018,6(7):8178-8191. doi: 10.1021/acssuschemeng.7b04668

    9. [9]

      Yin C Y, Wei Y J, Wang F W, Chen Y H, Bao X. Magnetic hierarchical porous carbon sphere prepared for removal of organic pollutants in water[J]. Mater. Lett., 2013,104:64-67. doi: 10.1016/j.matlet.2013.03.143

    10. [10]

      Liu Y, Fan X L, Jia X K, Chen X, Zhang A B, Zhang B L, Zhang Q Y. Preparation of magnetic hyper-cross-linked polymers for the efficient removal of antibiotics from water[J]. ACS Sustain. Chem. Eng., 2017,6(1):210-222.

    11. [11]

      Qiu J, Wu X Y, Qiu T T. High electromagnetic wave absorbing performance of activated hollow carbon fibers decorated with CNTs and Ni nanoparticles[J]. Ceram. Int., 2016,42(4):5278-5285. doi: 10.1016/j.ceramint.2015.12.056

    12. [12]

      Zhu M Y, Diao G W. Review on the progress in synthesis and application of magnetic carbon nanocomposites[J]. Nanoscale, 2011,3(7):2748-2767. doi: 10.1039/c1nr10165j

    13. [13]

      Xie L L, Jin Z H, Dai Z D, Chang Y L, Jiang X, Wang H L. Porous carbons synthesized by templating approach from fluid precursors and their applications in environment and energy storage: A review[J]. Carbon, 2020,170:100-118. doi: 10.1016/j.carbon.2020.07.034

    14. [14]

      Rider D A, Liu K, Eloi J C, Vanderark L, Yang L, Wang J Y, Grozea D, Lu Z H, Russell T P, Manners I. Nanostructured magnetic thin films from organometallic block copolymers: Pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane)[J]. ACS Nano, 2008,2(2):263-270. doi: 10.1021/nn7002629

    15. [15]

      Ruan Z J, Li Z. Recent progress of magnetic nanomaterials from cobalt-containing organometallic polymer precursors[J]. Polym. Chem., 2019,11(4):764-778.

    16. [16]

      Ruan Z J, Rong W H, Zhan X J, Li Q Q, Li Z. POSS containing organometallic polymers: Synthesis, characterization and solid-state pyrolysis behavior[J]. Polym. Chem., 2014,5(20):5994-6002. doi: 10.1039/C4PY00555D

    17. [17]

      Gou Y Z, Tong X, Zhang Q C, Wang H, Wang B, Xie S, Wang Y D. Synthesis of hyperbranched polyferrocenylsilanes as preceramic polymers for Fe/Si/C ceramic microspheres with porous structures[J]. J. Mater. Sci., 2015,50(24):7975-7984. doi: 10.1007/s10853-015-9362-9

    18. [18]

      Nakamura K, Suzuki N, Takase T. Preparation of magnetic carbon nanofibers derived from bacterial cellulose alloyed with magnetic fluid[J]. Diam. Relat. Mat., 2022,124108938. doi: 10.1016/j.diamond.2022.108938

    19. [19]

      Tian K S, Wang J Y, Guo W C, Li R F, Cao L, Xu Z P, Wang H Y. Yolk-shell Fe3 O4@Void@N-carbon nanostructures based on one-step deposition of SiO2 and resorcinol-3-aminophenol-formaldehyde (R-APF) cocondensed resin dual layers onto Fe3O4 nanoclusters[J]. Macromol. Rapid Commun., 2020,41(17)2000307. doi: 10.1002/marc.202000307

    20. [20]

      Hu T, Li Y M, Gao W, Wang X F, Tian Y. Engineering of rich nitrogen-doped and magnetic mesoporous carbon nanospheres with predictable size uniformity for acid dye molecules adsorption[J]. Microporous Mesoporous Mat., 2019,279:234-244. doi: 10.1016/j.micromeso.2018.12.034

    21. [21]

      Jiang W, Zhang X J, Sun Z D, Fang Y, Li F S, Chen K, Huang C X. Preparation and mechanism of magnetic carbonaceous polysaccharide microspheres by low-temperature hydrothermal method[J]. J. Magn. Magn. Mater., 2011,323(22):2741-2747. doi: 10.1016/j.jmmm.2011.05.058

    22. [22]

      Zhang B L, Yu H Y, Wang J Q, Chen X, Zhang H P, Zhang Q Y. Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase[J]. J. Alloy. Compd., 2018,735:1986-1996. doi: 10.1016/j.jallcom.2017.11.349

    23. [23]

      Xu P, Zheng M K, Chen N N, Wu Z G, Xu N F, Tang J G, Teng Z G. Uniform magnetic chitosan microspheres with radially oriented channels by electrostatic droplets method for efficient removal of acid blue[J]. J. Taiwan Inst. Chem. Eng., 2019,104:210-218. doi: 10.1016/j.jtice.2019.09.016

    24. [24]

      Gao Y, Xu S P, Yue Q Y, Wu Y W, Gao B Y. Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater[J]. J. Taiwan Inst. Chem. Eng., 2016,61:327-335. doi: 10.1016/j.jtice.2015.12.023

    25. [25]

      Jin Q, Li Y D, Yang D S, Cui J H. Chitosan-derived three-dimensional porous carbon for fast removal of methylene blue from wastewater[J]. RSC Adv., 2017,8(3):1255-1264.  

    26. [26]

      Guo L, An Q D, Xiao Z Y, Zhai S R, Cui L. Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment[J]. ACS Sustain. Chem. Eng., 2019,7(10):9237-9248. doi: 10.1021/acssuschemeng.9b00067

    27. [27]

      Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl. Chem., 2015,87(9/10):1051-1069.

    28. [28]

      Gobi K, Mashitah M D, Vadivelu V M. Adsorptive removal of methylene blue using novel adsorbent from palm oil mill effluent waste activated sludge: Equilibrium, thermodynamics and kinetic studies[J]. Chem. Eng. J., 2011,171(3):1246-1252. doi: 10.1016/j.cej.2011.05.036

    29. [29]

      Kyzas G Z, Deliyanni E A, Lazaridis N K. Magnetic modification of microporous carbon for dye adsorption[J]. Chem. Eng. J., 2014,430:166-173.

    30. [30]

      Chagovets V V, Kosevich M V, Stepanian S G, Boryak O A, Shelkovsky V S, Orlov V V, Leontiev V S, Pokrovskiy V A, Adamowicz L, Karachevtsev V A. Noncovalent interaction of methylene blue with carbon nanotubes: Theoretical and mass spectrometry characterization[J]. J. Phys. Chem. C, 2012,116(38):20579-20590. doi: 10.1021/jp306333c

    31. [31]

      Ahsan M A, Katla S K, Islam M T, Hernandez-Viezcas J A, Martinez L M, Díaz-Moreno C A, Lopez J, Singamaneni S R, Banuelos J, Gardea-Torresdey J, Noveron J C. Adsorptive removal of methylene blue, tetracycline and Cr(Ⅵ) from water using sulfonated tea waste[J]. Environ. Technol. Innov., 2018,11:23-40. doi: 10.1016/j.eti.2018.04.003

    32. [32]

      Zhou Q, Gao Q, Luo W J, Yan C J, Ji Z N, Duan P. One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2015,470:248-257. doi: 10.1016/j.colsurfa.2015.01.092

    33. [33]

      Wei S H, Kamali A R. Waste plastic derived Co3Fe7/CoFe2O4@carbon magnetic nanostructures for efficient dye adsorption[J]. J. Alloy. Compd., 2021,886161201. doi: 10.1016/j.jallcom.2021.161201

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    3. [3]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    4. [4]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    5. [5]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    11. [11]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    12. [12]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    13. [13]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    14. [14]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    15. [15]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    16. [16]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    17. [17]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    18. [18]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    19. [19]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    20. [20]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

Metrics
  • PDF Downloads(1)
  • Abstract views(469)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return