Citation: Jia-Xue MU, Xiong LI, Xun-Zhong ZOU, An-Sheng FENG, Yu LI. Synthesis, structures, and catalytic activity in the Knoevenagel condensation reaction of three Co(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) coordination polymers based on an ether-bridged tetracarboxylic acid[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 554-562. doi: 10.11862/CJIC.2023.024 shu

Synthesis, structures, and catalytic activity in the Knoevenagel condensation reaction of three Co(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) coordination polymers based on an ether-bridged tetracarboxylic acid

  • Corresponding author: Yu LI, liyuletter@163.com
  • Received Date: 30 September 2022
    Revised Date: 14 December 2022

Figures(11)

  • Three cobalt(Ⅱ)), copper(Ⅱ), and cadmium(Ⅱ) coordination polymers, namely [Co2(μ4-dia)(phen)2(H2O)2]n (1), [Cu2(μ6-dia)(bipy)2]n (2), and {[Cd2(μ5-dia)(μ-bpa)2(H2O)]·H2O}n (3) have been constructed hydrothermally using H4dia (5-(2, 5-dicarboxyphenoxy)isophthalic acid), phen (phen=1, 10-phenanthroline), bipy (2, 2'-bipyridine), bpa (bis(4-pyridyl)amine), and cobalt, copper and cadmium chlorides at 160 ℃. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses, and singlecrystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses reveal that three compounds crystallize in the monoclinic or triclinic systems, space groups P21/n, P21/c, or P1. Compound 1 discloses a 1D double-chain structure. Compounds 2 and 3 show 3D frameworks. The catalytic activity in the Knoevenagel condensation reaction of these compounds was investigated. Compound 2 exhibited excellent catalytic activity in the Knoevenagel conden-sation reaction at 50 ℃.
  • 加载中
    1. [1]

      Lustig W P, Li J. Luminescent metal-organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices[J]. Coord. Chem. Rev., 2018,373(15):116-147.

    2. [2]

      Chakraborty G, Park I, Medishetty R, Vittal J J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chem. Rev., 2021,121(7):3751-3891. doi: 10.1021/acs.chemrev.0c01049

    3. [3]

      Easun T L, Moreau F, Yan Y, Yang S, Schroder M. Structural and dynamic studies of substrate binding in porous metal-organic frame-works[J]. Chem. Soc. Rev., 2017,46(1):239-274. doi: 10.1039/C6CS00603E

    4. [4]

      Fan W D, Yuan S, Wang W J, Feng L, Liu X P, Zhang X R, Wang X, Kang Z X, Dai F N, Yuan D Q, Sun D F, Zhou H C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation[J]. J. Am. Chem. Soc., 2020,142(19):8728-8737. doi: 10.1021/jacs.0c00805

    5. [5]

      Zheng B, Luo X, Wang Z, Zhang S, Yun R, Huang L, Zeng W, Liu W. An unprecedented water stable acylamide-functionalized metal-organic framework for highly efficient CH4/CO2 gas storage/separation and acid-base cooperative catalytic activity[J]. Inorg. Chem. Front., 2018,5(9):2355-2363. doi: 10.1039/C8QI00662H

    6. [6]

      Patel N, Shukla P, Lama P, Das S, Pal T K. Engineering of metal-organic frameworks as ratiometric sensors[J]. Cryst. Growth Des., 2022,22(5):3518-3564. doi: 10.1021/acs.cgd.1c01268

    7. [7]

      Li J, Tian J F, Yu H H, Fan M Y, Li X, Liu F B, Sun J, Su Z M. Controllable synthesis of metal-organic frameworks based on anthracene ligands for high-sensitivity fluorescence sensing of Fe3+, Cr2O72-, and TNP[J]. Cryst. Growth Des., 2022,22(5):2954-2963. doi: 10.1021/acs.cgd.1c01412

    8. [8]

      Zhao L, Du Z G, Ji G F, Wang Y F, Cai W, He C, Duan C Y. Eosin Y-containing metal-organic framework as a heterogeneous catalyst for direct photoactivation of inert C—H bonds[J]. Inorg. Chem., 2022,61(19):7256-7265. doi: 10.1021/acs.inorgchem.1c03813

    9. [9]

      ZHAO S Q, GU J Z. Synthesis, structures and catalytic activity in Knoevenagel condensation reaction of two diphenyl ether tetracarboxylic acid-Co(Ⅱ) coordination polymers[J]. Chinese J. Inorg. Chem., 2022,38(1):161-170.  

    10. [10]

      Wei Y S, Zhang M, Zou R, Xu Q. Metal-organic framework-based catalysts with single metal sites[J]. Chem. Rev., 2020,120(21):12089-12174. doi: 10.1021/acs.chemrev.9b00757

    11. [11]

      Gu J Z, Wen M, Cai Y, Shi Z F, Arol A S, Kirillova M V, Kirillov A M. Metal-organic architectures assembled from multifunctional polycarboxylates: Hydrothermal self-assembly, structures, and catalytic activity in alkane oxidation[J]. Inorg. Chem., 2019,58(4):2403-2412. doi: 10.1021/acs.inorgchem.8b02926

    12. [12]

      Gu J Z, Wen M, Cai Y, Shi Z F, Nesterov D S, Kirillova M V, Kirillov A M. Cobalt coordination polymers assembled from unexplored pyridine-carboxylic acids: Structural diversity and catalytic oxidation of alcohols[J]. Inorg. Chem., 2019,58(9):5875-5885. doi: 10.1021/acs.inorgchem.9b00242

    13. [13]

      Zhu Y D, Xin N N, Qiao Z, Chen S P, Zeng L W, Zhang Y S, Wei D, Sun J, Fan H D. Bioactive MOFs based theranostic agent for highly effective combination of multimodal imaging and chemo-phototherapy[J]. Adv. Healthcare Mater., 2020,9(14)2000205. doi: 10.1002/adhm.202000205

    14. [14]

      Feng J, Ren W X, Kong F, Dong Y B. Recent insight into functional crystalline porous frameworks for cancer photodynamic therapy[J]. Inorg. Chem. Front., 2021,8(4):848-879. doi: 10.1039/D0QI01051K

    15. [15]

      Neumann T, Ceglarska M, Germann L S, Rams M, Dinnebier R E, Suckert S, Jess I, Naether C. Structures, thermodynamic relations, and magnetism of stable and metastable Ni(NCS)2 coordination polymers[J]. Inorg. Chem., 2018,57(6):3305-3314. doi: 10.1021/acs.inorgchem.8b00092

    16. [16]

      Makhanya N, Oboirien B, Ren J, Musyoka N, Sciacovelli A. Recent advances on thermal energy storage using metal-organic frameworks (MOFs)[J]. J. Energy Storage, 2021,34102179. doi: 10.1016/j.est.2020.102179

    17. [17]

      Huang W H, Zhang X X, Zhao Y N. Recent progress and perspectives on the structural design on metal-organic zeolite (MOZ) frameworks[J]. Dalton Trans., 2021,50(1):15-28. doi: 10.1039/D0DT03524F

    18. [18]

      Raptopoulou C P. Metal-organic frameworks: Synthetic methods and potential applications[J]. Materials, 2021,14(2)310. doi: 10.3390/ma14020310

    19. [19]

      Zheng X D, Lu T B. Constructions of helical coordination compounds[J]. CrystEngComm, 2010,12(2):324-336. doi: 10.1039/B911991D

    20. [20]

      Zhan G L, Zhong W, Wei Z H, Liu Z Z, Liu X M. Roles of phenol groups and auxiliary ligand of copper(Ⅱ) complexes with tetradentate ligands in the aerobic oxidation of benzyl alcohol[J]. Dalton Trans., 2017,46(25):8286-8297. doi: 10.1039/C7DT01716B

    21. [21]

      Fan G D, Hong L, Zheng X M, Zhou J J, Zhan J J, Chen Z, Liu S Y. Growth inhibition of microcystic aeruginosa by metal-organic frameworks: Effect of variety, metal ion and organic ligand[J]. RSC Adv., 2018,8(61):35314-35326. doi: 10.1039/C8RA05608K

    22. [22]

      Lei Z, Hu L, Yu Z H, Yao Q Y, Chen X, Li H, Liu R M, Li C P, Zhu X D. Ancillary ligand enabled structural and fluorescence diversity in metal-organic frameworks: Application for the ultra-sensitive detection of nitrofuran antibiotics[J]. Inorg. Chem. Front., 2021,8(5):1290-1296. doi: 10.1039/D0QI01098G

    23. [23]

      Yang Y P, Lu C X, Wang H L, Liu X M. Amide bond cleavage initiated by coordination with transition metal ions and tuned by an auxiliary ligand[J]. Dalton Trans., 2016,45(25):10289-10296. doi: 10.1039/C6DT01411A

    24. [24]

      Gu J Z, Cui Y H, Liang X X, Wu J, Lv D Y, Kirillov A M. Structurally distinct metal-organic and H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: Coordination and template effect of 4, 4'-bipyridine[J]. Cryst. Growth Des., 2016,16(8):4658-4670. doi: 10.1021/acs.cgd.6b00735

    25. [25]

      Wei N, Zhang M Y, Zhang X N, Li G M, Zhang X D. Two series of solvent-dependent lanthanide coordination polymers demonstrating tunable luminescence and catalysis properties[J]. Cryst. Growth Des., 2014,14(6):3002-3009. doi: 10.1021/cg500286v

    26. [26]

      Kühne I A, Carter A B, Kostakis G E, Anson C E, Powell A K. Varying the dimensionality of Cu(Ⅱ)-based coordination polymers through solvent influence[J]. Crystals, 2020,10(10)893. doi: 10.3390/cryst10100893

    27. [27]

      Li Y, Wu J, Gu J Z, Qiu W D, Feng A S. Temperature-dependent syntheses of two manganese(Ⅱ) coordination compounds based on an ether-bridged tetracarbolylic acid[J]. Chin. J. Struct. Chem., 2020,39(4):727-736.

    28. [28]

      ZHOU X Z, WU J, GU J Z, ZHAO N, FENG A S, LI Y. Syntheses of two nickel(Ⅱ) coordination compounds based on a rigid linear tricarboxylic acid[J]. Chinese J. Inorg. Chem., 2019,35(9):1705-1711.  

    29. [29]

      Gu J Z, Gao Z Q, Tang Y. pH and auxiliary ligand influence on the structural variations of 5(2'-carboxylphenyl) nicotate coordination polymers[J]. Cryst. Gorwth Des., 2012,12(6):3312-3323. doi: 10.1021/cg300442b

    30. [30]

      Zhong D C, Lu W G, Deng J H. Two three-dimensional cadmium coordination polymers based on 5-amino-tetrazolate and 1, 2, 4, 5-benzenetetracarboxylate: The pH value controlled syntheses, crystal structures and luminescent properties[J]. CrystEngComm, 2014,16(21):4633-4640. doi: 10.1039/C4CE00219A

    31. [31]

      Cheng X Y, Guo L R, Wang H Y, Gu J Z, Yang Y, Kirillova M V, Kirillov A M. Coordination polymers from biphenyl-dicarboxylate linkers: Synthesis, structural diversity, interpenetration, and catalytic properties[J]. Inorg. Chem., 2022,61(32):12577-12590. doi: 10.1021/acs.inorgchem.2c01488

    32. [32]

      Gu J Z, Wan S M, Dou W, Kirillova M V, Kirillov A M. Coordination polymers from unexplored biphenyltricarboxylate linker: Hydrothermal synthesis, structural traits and catalytic cyanosilylation[J]. Inorg. Chem. Front., 2021,8(5):1229-1242. doi: 10.1039/D0QI01230K

    33. [33]

      Addison A W, Rao T N, Reedijk J, Van Rijin J, Verschoor G C. Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen sulfur donor ligands-the crystal and molecular-structure of aqua[1, 7-bis(N-methylbenzimidazol-2'-yl)-2, 6-dithiaheptane] copper(Ⅱ) perchlorate[J]. J. Chem. Soc. Dalton Trans., 1984,7:1349-1356.

    34. [34]

      Chen H T, Fan L M, Hu T P, Zhang X T. 6s-3d {Ba3Zn4}-organic framework as an effective heterogeneous catalyst for chemical fixation of CO2 and Knoevenagel condensation reaction[J]. Inorg. Chem., 2021,60(5):3384-3392. doi: 10.1021/acs.inorgchem.0c03736

    35. [35]

      Karmakar A, Rúbio G M D M, Guedes da Silva M F C, Pombeiro A J L. Synthesis of metallomacrocycle and coordination polymers with pyridine-based amidocarboxylate ligands and their catalytic acitivities towards the Henry and Knoevenagel reaction[J]. ChemistryOpen, 2018,7(11):865-877. doi: 10.1002/open.201800170

    36. [36]

      Almáši M, Zeleňák V, Opanasenko M, Čejka J. A novel nickel metalorganic framework with fluorite-like structure: Gas adsorption properties and catalytic activity in Knoevenagel condensation[J]. Dalton Trans., 2014,43(9):3730-3738. doi: 10.1039/c3dt52698d

    37. [37]

      Cheng X Y, Guo L R, Wang H Y, Gu J Z, Yang Y, Kirillova M V, Kirillov A M. Coordination polymers constructed from an adaptable pyridine-dicarboxylic acid linker: Assembly, diversity of structures, and catalysis[J]. Inorg. Chem., 2022,61(45):17951-17962. doi: 10.1021/acs.inorgchem.2c01855

  • 加载中
    1. [1]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    8. [8]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    9. [9]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    12. [12]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    17. [17]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    18. [18]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    19. [19]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(4)
  • Abstract views(361)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return