Construction of Sb2O3/BiVO4/WO3 heterojunction for photoelectrocatalytic synthesis of hydrogen peroxide
- Corresponding author: Wen‐Long GUO, gwlcqnu@cqnu.edu.cn Xi LIU, xliu@cqnu.edu.cn
Citation:
Yin‐Qiong XIE, Shi TANG, Shan‐Shan WANG, Xin LIAN, Wen‐Long GUO, Xi LIU. Construction of Sb2O3/BiVO4/WO3 heterojunction for photoelectrocatalytic synthesis of hydrogen peroxide[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(3): 433-442.
doi:
10.11862/CJIC.2023.022
Wang S C, Wang X, Liu B Y, Guo Z C, Ostrikov K, Wang L Z, Huang W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting[J]. Nanoscale, 2021,13(43):17989-18009. doi: 10.1039/D1NR05691C
Liu J L, Zou Y S, Jin B J, Zhang K, Park J H. Hydrogen peroxide production from solar water oxidation[J]. ACS Energy Lett., 2019,4(12):3018-3027. doi: 10.1021/acsenergylett.9b02199
Gao R, Yan D P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation[J]. Adv. Energy Mater., 2020,10(11)1900954. doi: 10.1002/aenm.201900954
Tayebi M, Lee B K. Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting[J]. Renew. Sust. Energ. Rev., 2019,111:332-343. doi: 10.1016/j.rser.2019.05.030
Sharma P, Jang J W, Lee J S. Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 photoanode[J]. ChemCatChem, 2019,11(1):157-179. doi: 10.1002/cctc.201801187
GUO Y Q, FAN A L, PANG W, XIE D K, GAO D C. Preparation of plate NiWP@polyhedral NiWO electrocatalyst for hydrogen evolution[J]. Chinese J. Inorg. Chem., 2022,38(7):1283-1290.
Li F, Leung D Y C. Highly enhanced performance of heterojunction Bi2S3/BiVO4 photoanode for photoelectrocatalytic hydrogen production under solar light irradiation[J]. Chem. Eng. Sci., 2020,211115266. doi: 10.1016/j.ces.2019.115266
Samsudin M F R, Ullah H, Bashiri R, Mohamed N M, Sufian S, Ng Y H. Experimental and DFT insights on microflower g-C3N4/BiVO4 photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water[J]. ACS Sustain. Chem. Eng., 2020,8(25):9393-9403. doi: 10.1021/acssuschemeng.0c02063
Ayyub M M, Chhetri M, Gupta U, Roy A, Rao C N R. Photochemical and photoelectrochemical hydrogen generation by splitting seawater[J]. Chem. Eur. J., 2018,24(69):18455-18462. doi: 10.1002/chem.201804119
FANG J X, DENG W M, JIANG J Z, ZOU J. Preparation of β-FeOOH/U-g-C3N4 heterojunction and their performances in photoelectrocatalytic hydrogen evolution reaction[J]. Journal of Wuhan Institute of Technology, 2020,42(2):165-171.
Yang L, Chen H, Xu Y T, Qian R, Chen Q, Fang Y X. Synergetic effects by Co2+ and PO43- on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution[J]. Chem. Eng. Sci., 2022,251117435. doi: 10.1016/j.ces.2022.117435
Zhang Z J, Tsuchimochi T, Ina T, Kumabe Y, Muto S, Ohara K, Yamada H, Ten-no S L, Tachikawa T. Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis[J]. Nat. Commun., 2022,13(1)1499. doi: 10.1038/s41467-022-28944-y
Shi X J, Zhang Y R, Siahrostami S, Zheng X L. Light-driven BiVO4-C fuel cell with simultaneous production of H2O2[J]. Adv. Energy Mater., 2018,8(23)1801158. doi: 10.1002/aenm.201801158
Jeon T H, Kim H, Kim H I, Choi W. Highly durable photoelectrohemical H2O2 production via dual photoanode and cathode processes under solar simulating and external bias-free conditions[J]. Energy Environ. Sci., 2020,13(6):1730-1742. doi: 10.1039/C9EE03154E
Xue Y D, Wang Y T, Pan Z H, Sayama K. Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production[J]. Angew. Chem. Int. Ed., 2021,60(19):10469-10480. doi: 10.1002/anie.202011215
Torres-Pinto A, Sampaio M J, Silva C G, Faria J L, Silva A M T. Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts[J]. Catalysts, 2019,9(12)990. doi: 10.3390/catal9120990
Chu W H, Gao N Y, Yin D Q, Krasner S W, Mitch W A. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination[J]. Environ. Sci. Technol., 2014,48(20):12190-12198. doi: 10.1021/es502115x
Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angew. Chem. Int. Ed., 2006,45(42):6962-6984. doi: 10.1002/anie.200503779
XU W B, ZHOU K, ZHANG Y H, HE L, YANG L. Advanced treatment of cyanide wastewater with high concentration by the two-step precipitation coupled with H2O2 Oxidation[J]. Industrial Water Treatment, 2022. doi: 10.19965/j.cnki.iwt.2022-0346
Hu S. Membrane -less photoelectrochemical devices for H2O2 production: Efficiency limit and operational constraint[J]. Sustain. Energy Fuels, 2019,3(1):101-114. doi: 10.1039/C8SE00329G
Topalovic T, Nierstrasz V A, Bautista L, Jocic D, Navarro A, Warmoeskerken M M C G. Analysis of the effects of catalytic bleaching on cotton[J]. Cellulose, 2007,14(4):385-400. doi: 10.1007/s10570-007-9120-5
LI Y D, YIN J L. Development of cathode catalyst for H2O2 reduction on fuel cells[J]. Chemical Engineer, 2011,25(6):42-44. doi: 10.3969/j.issn.1002-1124.2011.06.013
Iwase A, Nozawa S, Adachi S, Kudo A. Preparation of Mo-and W-doped BiVO4 fine particles prepared by an aqueous route for photocatalytic and photoelectrochemical O2 evolution[J]. J. Photochem. Photobiol. A, 2018,353:284-291. doi: 10.1016/j.jphotochem.2017.11.025
Tayebi M, Lee B K. The effects of W/Mo-Co-doped BiVO4 photoanodes for improving photoelectrochemical water splitting performance[J]. Catal. Today, 2021,361:183-190. doi: 10.1016/j.cattod.2020.03.066
Li X H, Dong Y J, Hu G Y, Ma K W, Chen M X, Ding Y. Morphology engineering of BiVO4 with CoOx derived from cobalt-containing polyoxometalate as co-catalyst for oxygen evolution[J]. Chem. Asian J., 2021,16(19):2967-2972. doi: 10.1002/asia.202100805
Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment[J]. J. Phys. Chem. B, 2006,110(23):11352-11360. doi: 10.1021/jp057539+
HU Y, AN L, HAN X, HOU C Y, WANG H Z, LI Y G, ZHANG Q H. Preparation of RhO2 modified BiVO4 thin film photoanodes and their photoelectrocatalytic water splitting performance[J]. J. Inorg. Mater., 2022,37(8):873-882.
Fuku K, Sayama K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode[J]. Chem. Commun., 2016,52(31):5406-5409. doi: 10.1039/C6CC01605G
Fuku K, Miyase Y, Miseki Y, Gunji T, Sayama K. WO3/BiVO4 photoanode coated with mesoporous Al2O3 layer for oxidative production of hydrogen peroxide from water with high selectivity[J]. RSC Adv., 2017,7(75):47619-47623. doi: 10.1039/C7RA09693C
Baek J H, Gill T M, Abroshan H, Park S, Shi X J, Nørskov J, Jung H S, Siahrostami S, Zheng X L. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2[J]. ACS Energy Lett., 2019,4(3):720-728. doi: 10.1021/acsenergylett.9b00277
Zhang K, Liu J L, Wang L Y, Jin B J, Yang X F, Zhang S L, Park J H. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis[J]. J. Am. Chem. Soc., 2020,142(19):8641-8648. doi: 10.1021/jacs.9b13410
Zhang K, Lu Y, Zou Q Q, Jin J, Cho Y, Wang Y Q, Zhang Y, Park J H. Tuning selectivity of photoelectrochemical water oxidation via facet-engineered interfacial energetics[J]. ACS Energy Lett., 2021,6(11):4071-4078. doi: 10.1021/acsenergylett.1c01831
Wang L Y, Lu Y, Han N N, Dong C R, Lin C, Lu S Y, Min Y L, Zhang K. Suppressing water dissociation via control of intrinsic oxygen defects for awakening solar H2O-to-H2O2 generation[J]. Small, 2021,17(13)2100400. doi: 10.1002/smll.202100400
Wang Y, Lian X, Zhou Y, Guo W L, He H C. Synthesis and characterization of Sb2O3: A stable electrocatalyst for efficient H2O2 production and accumulation and effective degradation of dyes[J]. New J. Chem., 2021,45(20):8958-8964. doi: 10.1039/D1NJ00637A
Guo W L, Xie Y Q, Liu Y X, Shang S Y, Lian X, Liu X. Effects of Sb2O3 polymorphism on the performances for electrocatalytic H2O2 production via the two-electron water oxidation reaction[J]. Appl. Surf. Sci., 2022,606155006. doi: 10.1016/j.apsusc.2022.155006
Guo W L, Wang Y, Lian X, Nie Y, Tian S J, Wang S S, Zhou Y, Henkelman G. Insights into the multiple effects of oxygen vacancies on CuWO4 for photoelectrochemical water oxidation[J]. Catal. Sci. Technol., 2020,10(21):7344-7351. doi: 10.1039/D0CY01430C
Nair V, Perkins C L, Lin Q Y, Law M. Textured nanoporous Mo: BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution[J]. Energy Environ. Sci., 2016,9(4):1412-1429. doi: 10.1039/C6EE00129G
SHEN N, SHEN Y, PAN H, XU L H, LI K, NI Z W, NI K, LING H L. Preparation and photocatalytic properties of Cu-doped BiVO4 catalyst[J]. Chinese J. Inorg. Chem., 2021,37(10):1839-1846. doi: 10.11862/CJIC.2021.214
LENG C, MA C Y, WANG R T, ZHAO G H, ZHANG Q Y. Preparation and visible light catalytic activity of plasma-treated TiO2/WO3/Bi2WO6 nanocomposites[J]. Fine Chemicals, 2022,39(8):1603-1611.
Selim S, Francàs L, García-Tecedor M, Corby S, Blackman C, Gimenez S, Durrant J R, Kafizas A. WO3/BiVO4: Impact of charge separation at the timescale of water oxidation[J]. Chem. Sci., 2019,10(9):2643-2652. doi: 10.1039/C8SC04679D
Kangkun N, Ponchio C. Photoelectrodeposition of BiVO4 layer on FTO/WO3 photoanodes for highly efficient photoelectrocatalytic chemical oxygen demand sensor applications[J]. Appl. Surf. Sci., 2020,526146686. doi: 10.1016/j.apsusc.2020.146686
Miyase Y, Takasugi S, Iguchi S, Miseki Y, Gunji T, Sasaki K, Fujita E, Sayama K. Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O[J]. Sustain. Energy Fuels, 2018,2(7):1621-1629. doi: 10.1039/C8SE00070K
ZHU L J, XUE H, XIAO L R, CHEN Q H. Preparation and photocatalytic performance of cubic Sb2O3 nanocrystalline[J]. Chinese J. Inorg. Chem., 2012,28(10):2165-2169.
ZHANG X Q, LU G X. Thin film protection strategy of Ⅲ-Ⅴ semiconductor photoelectrode for water splitting[J]. Prog. Chem., 2020,32(9):1368-1375.
Ding C M, Shi J Y, Wang D G, Wang Z J, Wang N, Liu G J, Xiong F Q, Li C. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias[J]. Phys. Chem. Chem. Phys., 2013,15(13):4589-4595. doi: 10.1039/c3cp50295c
Toma F M, Cooper J K, Kunzelmann V, McDowell M T, Yu J, Larson D M, Borys N J, Abelyan C, Beeman J W, Yu K M, Yang J H, Chen L, Shaner M R, Spurgeon J, Houle F A, Persson K A, Sharp I D. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes[J]. Nat. Commun., 2016,7(1)12012. doi: 10.1038/ncomms12012
Lee D K, Choi K S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition[J]. Nat. Energy, 2018,3(1):53-60.
McDowell M T, Lichterman M F, Spurgeon J M, Hu S, Sharp I D, Brunschwig B S, Lewis N S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings[J]. J. Phys. Chem. C, 2014,118(34):19618-19624. doi: 10.1021/jp506133y
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
Inset of (d): the electronic images of these four films
Points with error bars are constructed using the average of two films and their standard deviation
Inset of (c): the pictures of 3c-BiVO4/WO3 (left) and 1c-Sb2O3/BiVO4/WO3 (right) films after 9 000 s of reaction at 1.89 V (vs RHE)