Citation: Yin‐Qiong XIE, Shi TANG, Shan‐Shan WANG, Xin LIAN, Wen‐Long GUO, Xi LIU. Construction of Sb2O3/BiVO4/WO3 heterojunction for photoelectrocatalytic synthesis of hydrogen peroxide[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 433-442. doi: 10.11862/CJIC.2023.022 shu

Construction of Sb2O3/BiVO4/WO3 heterojunction for photoelectrocatalytic synthesis of hydrogen peroxide

Figures(8)

  • Sb2O3/BiVO4/WO3 semiconductor heterojunctions were constructed by solvothermal method and spin coating method, and X‐ray diffraction, scanning electron microscopy, and X‐ray photoelectron spectroscopy were used to characterize the physical and chemical properties. The photocurrent density of BiVO4/WO3 was increased by two times compared with BiVO4 at 1.23 V (vs RHE). Although further coating with Sb2O3 decreased the photocurrent density of Sb2O3/BiVO4/WO3 film, the Faraday efficiency and production rate of H2O2 were improved. At 1.89 V (vs RHE), the Faraday efficiency of 3c‐Sb2O3/BiVO4/WO3 film was enhanced to ca. 19%; the production rate of H2O2 of 1c‐Sb2 O3/BiVO4 /WO3 film increased from ca. 2.1 to ca. 3.6 μmol·h-1·cm-2. In addition, the coating of Sb2O3 significantly improved the photoelectrocatalytic stability of BiVO4/WO3 electrode.
  • 加载中
    1. [1]

      Wang S C, Wang X, Liu B Y, Guo Z C, Ostrikov K, Wang L Z, Huang W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting[J]. Nanoscale, 2021,13(43):17989-18009. doi: 10.1039/D1NR05691C

    2. [2]

      Liu J L, Zou Y S, Jin B J, Zhang K, Park J H. Hydrogen peroxide production from solar water oxidation[J]. ACS Energy Lett., 2019,4(12):3018-3027. doi: 10.1021/acsenergylett.9b02199

    3. [3]

      Gao R, Yan D P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation[J]. Adv. Energy Mater., 2020,10(11)1900954. doi: 10.1002/aenm.201900954

    4. [4]

      Tayebi M, Lee B K. Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting[J]. Renew. Sust. Energ. Rev., 2019,111:332-343. doi: 10.1016/j.rser.2019.05.030

    5. [5]

      Sharma P, Jang J W, Lee J S. Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 photoanode[J]. ChemCatChem, 2019,11(1):157-179. doi: 10.1002/cctc.201801187

    6. [6]

      GUO Y Q, FAN A L, PANG W, XIE D K, GAO D C. Preparation of plate NiWP@polyhedral NiWO electrocatalyst for hydrogen evolution[J]. Chinese J. Inorg. Chem., 2022,38(7):1283-1290.  

    7. [7]

      Li F, Leung D Y C. Highly enhanced performance of heterojunction Bi2S3/BiVO4 photoanode for photoelectrocatalytic hydrogen production under solar light irradiation[J]. Chem. Eng. Sci., 2020,211115266. doi: 10.1016/j.ces.2019.115266

    8. [8]

      Samsudin M F R, Ullah H, Bashiri R, Mohamed N M, Sufian S, Ng Y H. Experimental and DFT insights on microflower g-C3N4/BiVO4 photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water[J]. ACS Sustain. Chem. Eng., 2020,8(25):9393-9403. doi: 10.1021/acssuschemeng.0c02063

    9. [9]

      Ayyub M M, Chhetri M, Gupta U, Roy A, Rao C N R. Photochemical and photoelectrochemical hydrogen generation by splitting seawater[J]. Chem. Eur. J., 2018,24(69):18455-18462. doi: 10.1002/chem.201804119

    10. [10]

      FANG J X, DENG W M, JIANG J Z, ZOU J. Preparation of β-FeOOH/U-g-C3N4 heterojunction and their performances in photoelectrocatalytic hydrogen evolution reaction[J]. Journal of Wuhan Institute of Technology, 2020,42(2):165-171.  

    11. [11]

      Yang L, Chen H, Xu Y T, Qian R, Chen Q, Fang Y X. Synergetic effects by Co2+ and PO43- on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution[J]. Chem. Eng. Sci., 2022,251117435. doi: 10.1016/j.ces.2022.117435

    12. [12]

      Zhang Z J, Tsuchimochi T, Ina T, Kumabe Y, Muto S, Ohara K, Yamada H, Ten-no S L, Tachikawa T. Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis[J]. Nat. Commun., 2022,13(1)1499. doi: 10.1038/s41467-022-28944-y

    13. [13]

      Shi X J, Zhang Y R, Siahrostami S, Zheng X L. Light-driven BiVO4-C fuel cell with simultaneous production of H2O2[J]. Adv. Energy Mater., 2018,8(23)1801158. doi: 10.1002/aenm.201801158

    14. [14]

      Jeon T H, Kim H, Kim H I, Choi W. Highly durable photoelectrohemical H2O2 production via dual photoanode and cathode processes under solar simulating and external bias-free conditions[J]. Energy Environ. Sci., 2020,13(6):1730-1742. doi: 10.1039/C9EE03154E

    15. [15]

      Xue Y D, Wang Y T, Pan Z H, Sayama K. Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production[J]. Angew. Chem. Int. Ed., 2021,60(19):10469-10480. doi: 10.1002/anie.202011215

    16. [16]

      Torres-Pinto A, Sampaio M J, Silva C G, Faria J L, Silva A M T. Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts[J]. Catalysts, 2019,9(12)990. doi: 10.3390/catal9120990

    17. [17]

      Chu W H, Gao N Y, Yin D Q, Krasner S W, Mitch W A. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination[J]. Environ. Sci. Technol., 2014,48(20):12190-12198. doi: 10.1021/es502115x

    18. [18]

      Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angew. Chem. Int. Ed., 2006,45(42):6962-6984. doi: 10.1002/anie.200503779

    19. [19]

      XU W B, ZHOU K, ZHANG Y H, HE L, YANG L. Advanced treatment of cyanide wastewater with high concentration by the two-step precipitation coupled with H2O2 Oxidation[J]. Industrial Water Treatment, 2022. doi: 10.19965/j.cnki.iwt.2022-0346

    20. [20]

      Hu S. Membrane -less photoelectrochemical devices for H2O2 production: Efficiency limit and operational constraint[J]. Sustain. Energy Fuels, 2019,3(1):101-114. doi: 10.1039/C8SE00329G

    21. [21]

      Topalovic T, Nierstrasz V A, Bautista L, Jocic D, Navarro A, Warmoeskerken M M C G. Analysis of the effects of catalytic bleaching on cotton[J]. Cellulose, 2007,14(4):385-400. doi: 10.1007/s10570-007-9120-5

    22. [22]

      LI Y D, YIN J L. Development of cathode catalyst for H2O2 reduction on fuel cells[J]. Chemical Engineer, 2011,25(6):42-44. doi: 10.3969/j.issn.1002-1124.2011.06.013

    23. [23]

      Iwase A, Nozawa S, Adachi S, Kudo A. Preparation of Mo-and W-doped BiVO4 fine particles prepared by an aqueous route for photocatalytic and photoelectrochemical O2 evolution[J]. J. Photochem. Photobiol. A, 2018,353:284-291. doi: 10.1016/j.jphotochem.2017.11.025

    24. [24]

      Tayebi M, Lee B K. The effects of W/Mo-Co-doped BiVO4 photoanodes for improving photoelectrochemical water splitting performance[J]. Catal. Today, 2021,361:183-190. doi: 10.1016/j.cattod.2020.03.066

    25. [25]

      Li X H, Dong Y J, Hu G Y, Ma K W, Chen M X, Ding Y. Morphology engineering of BiVO4 with CoOx derived from cobalt-containing polyoxometalate as co-catalyst for oxygen evolution[J]. Chem. Asian J., 2021,16(19):2967-2972. doi: 10.1002/asia.202100805

    26. [26]

      Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment[J]. J. Phys. Chem. B, 2006,110(23):11352-11360. doi: 10.1021/jp057539+

    27. [27]

      HU Y, AN L, HAN X, HOU C Y, WANG H Z, LI Y G, ZHANG Q H. Preparation of RhO2 modified BiVO4 thin film photoanodes and their photoelectrocatalytic water splitting performance[J]. J. Inorg. Mater., 2022,37(8):873-882.  

    28. [28]

      Fuku K, Sayama K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode[J]. Chem. Commun., 2016,52(31):5406-5409. doi: 10.1039/C6CC01605G

    29. [29]

      Fuku K, Miyase Y, Miseki Y, Gunji T, Sayama K. WO3/BiVO4 photoanode coated with mesoporous Al2O3 layer for oxidative production of hydrogen peroxide from water with high selectivity[J]. RSC Adv., 2017,7(75):47619-47623. doi: 10.1039/C7RA09693C

    30. [30]

      Baek J H, Gill T M, Abroshan H, Park S, Shi X J, Nørskov J, Jung H S, Siahrostami S, Zheng X L. Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2[J]. ACS Energy Lett., 2019,4(3):720-728. doi: 10.1021/acsenergylett.9b00277

    31. [31]

      Zhang K, Liu J L, Wang L Y, Jin B J, Yang X F, Zhang S L, Park J H. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis[J]. J. Am. Chem. Soc., 2020,142(19):8641-8648. doi: 10.1021/jacs.9b13410

    32. [32]

      Zhang K, Lu Y, Zou Q Q, Jin J, Cho Y, Wang Y Q, Zhang Y, Park J H. Tuning selectivity of photoelectrochemical water oxidation via facet-engineered interfacial energetics[J]. ACS Energy Lett., 2021,6(11):4071-4078. doi: 10.1021/acsenergylett.1c01831

    33. [33]

      Wang L Y, Lu Y, Han N N, Dong C R, Lin C, Lu S Y, Min Y L, Zhang K. Suppressing water dissociation via control of intrinsic oxygen defects for awakening solar H2O-to-H2O2 generation[J]. Small, 2021,17(13)2100400. doi: 10.1002/smll.202100400

    34. [34]

      Wang Y, Lian X, Zhou Y, Guo W L, He H C. Synthesis and characterization of Sb2O3: A stable electrocatalyst for efficient H2O2 production and accumulation and effective degradation of dyes[J]. New J. Chem., 2021,45(20):8958-8964. doi: 10.1039/D1NJ00637A

    35. [35]

      Guo W L, Xie Y Q, Liu Y X, Shang S Y, Lian X, Liu X. Effects of Sb2O3 polymorphism on the performances for electrocatalytic H2O2 production via the two-electron water oxidation reaction[J]. Appl. Surf. Sci., 2022,606155006. doi: 10.1016/j.apsusc.2022.155006

    36. [36]

      Guo W L, Wang Y, Lian X, Nie Y, Tian S J, Wang S S, Zhou Y, Henkelman G. Insights into the multiple effects of oxygen vacancies on CuWO4 for photoelectrochemical water oxidation[J]. Catal. Sci. Technol., 2020,10(21):7344-7351. doi: 10.1039/D0CY01430C

    37. [37]

      Nair V, Perkins C L, Lin Q Y, Law M. Textured nanoporous Mo: BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution[J]. Energy Environ. Sci., 2016,9(4):1412-1429. doi: 10.1039/C6EE00129G

    38. [38]

      SHEN N, SHEN Y, PAN H, XU L H, LI K, NI Z W, NI K, LING H L. Preparation and photocatalytic properties of Cu-doped BiVO4 catalyst[J]. Chinese J. Inorg. Chem., 2021,37(10):1839-1846. doi: 10.11862/CJIC.2021.214 

    39. [39]

      LENG C, MA C Y, WANG R T, ZHAO G H, ZHANG Q Y. Preparation and visible light catalytic activity of plasma-treated TiO2/WO3/Bi2WO6 nanocomposites[J]. Fine Chemicals, 2022,39(8):1603-1611.  

    40. [40]

      Selim S, Francàs L, García-Tecedor M, Corby S, Blackman C, Gimenez S, Durrant J R, Kafizas A. WO3/BiVO4: Impact of charge separation at the timescale of water oxidation[J]. Chem. Sci., 2019,10(9):2643-2652. doi: 10.1039/C8SC04679D

    41. [41]

      Kangkun N, Ponchio C. Photoelectrodeposition of BiVO4 layer on FTO/WO3 photoanodes for highly efficient photoelectrocatalytic chemical oxygen demand sensor applications[J]. Appl. Surf. Sci., 2020,526146686. doi: 10.1016/j.apsusc.2020.146686

    42. [42]

      Miyase Y, Takasugi S, Iguchi S, Miseki Y, Gunji T, Sasaki K, Fujita E, Sayama K. Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O[J]. Sustain. Energy Fuels, 2018,2(7):1621-1629. doi: 10.1039/C8SE00070K

    43. [43]

      ZHU L J, XUE H, XIAO L R, CHEN Q H. Preparation and photocatalytic performance of cubic Sb2O3 nanocrystalline[J]. Chinese J. Inorg. Chem., 2012,28(10):2165-2169.  

    44. [44]

      ZHANG X Q, LU G X. Thin film protection strategy of Ⅲ-Ⅴ semiconductor photoelectrode for water splitting[J]. Prog. Chem., 2020,32(9):1368-1375.

    45. [45]

      Ding C M, Shi J Y, Wang D G, Wang Z J, Wang N, Liu G J, Xiong F Q, Li C. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias[J]. Phys. Chem. Chem. Phys., 2013,15(13):4589-4595. doi: 10.1039/c3cp50295c

    46. [46]

      Toma F M, Cooper J K, Kunzelmann V, McDowell M T, Yu J, Larson D M, Borys N J, Abelyan C, Beeman J W, Yu K M, Yang J H, Chen L, Shaner M R, Spurgeon J, Houle F A, Persson K A, Sharp I D. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes[J]. Nat. Commun., 2016,7(1)12012. doi: 10.1038/ncomms12012

    47. [47]

      Lee D K, Choi K S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition[J]. Nat. Energy, 2018,3(1):53-60.

    48. [48]

      McDowell M T, Lichterman M F, Spurgeon J M, Hu S, Sharp I D, Brunschwig B S, Lewis N S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings[J]. J. Phys. Chem. C, 2014,118(34):19618-19624. doi: 10.1021/jp506133y

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

Metrics
  • PDF Downloads(4)
  • Abstract views(727)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return