Citation: Wen-Min WANG, Xiao-Yan XIN, Na QIAO, Guo-Li YANG. Synthesis, crystal structure, and conversion of CO2 of a Yb8 cluster[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 510-520. doi: 10.11862/CJIC.2023.017 shu

Synthesis, crystal structure, and conversion of CO2 of a Yb8 cluster

Figures(10)

  • A novel and interesting Yb8 cluster, namely [Yb8(acac)4(HL)4(L)2(μ3-O)4(C2H5O)4]·2C2H5OH·2CH2Cl2 (1) (H2L=2-hydroxy-benzoic acid (5-hydroxymethyl-furan-2-ylmethylene)-hydrazide, and Hacac=acetylacetone), has been constructed by using a polydentate Schiff base ligand (H2L). X-ray diffraction analysis indicates that cluster 1 shows a central symmetric octanuclear structure. The eight-coordinated Yb1(Ⅲ) ion possesses a distorted bi-augmented trigonal prism geometrical configuration; while the three seven-coordinated Yb(Ⅲ) ions (Yb2, Yb3, and Yb4) possess capped trigonal prism, pentagonal bipyramid, and capped octahedron geometrical configuration, respectively. Cluster 1 possesses excellent solvent stability. Moreover, the photoluminescence property study shows that 1 displayed typical near-infrared luminescence of Yb(Ⅲ) at room temperature. Interestingly, cluster 1 exhibited high catalytic activity and can effectively catalyze the cycloaddition reaction of CO2 with various epoxides. As a heterogeneous catalyst, cluster 1 showed good cycling performance.
  • 加载中
    1. [1]

      Zheng X Y, Xie J, Kong X J, Long L S, Zheng L S. Recent advances in the assembly of high-nuclearity lanthanide clusters[J]. Coord. Chem. Rev., 2019,378:222-236. doi: 10.1016/j.ccr.2017.10.023

    2. [2]

      Zheng X Y, Kong X J, Zheng Z, Long L S, Zheng L S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers[J]. Acc. Chem. Res., 2018,51:517-525. doi: 10.1021/acs.accounts.7b00579

    3. [3]

      Zhu Z H, Peng J M, Wang H L, Zou H H, Liang F P. Assembly mechanism and heavy metal ion sensing of cage-shaped lanthanide nanoclusters[J]. Cell Rep. Phys. Sci., 2020,1100165. doi: 10.1016/j.xcrp.2020.100165

    4. [4]

      Zheng X Y, Jiang Y H, Zhuang G L, Liu D P, Liao H G, Kong X J, Long L S, Zheng L S. A gigantic molecular wheel of {Gd140}: A new member of the molecular wheel family[J]. J. Am. Chem. Soc., 2017,139:18178-18181. doi: 10.1021/jacs.7b11112

    5. [5]

      Peng J B, Kong X J, Zhang Q C, Orendáč M, Prokleška J, Ren Y P, Long L S, Zheng Z, Zheng L S. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms[J]. J. Am. Chem. Soc., 2014,136:17938-17941. doi: 10.1021/ja5107749

    6. [6]

      Li X Y, Su H F, Li Q W, Feng R, Bai H Y, Chen H Y, Xu J, Bu X H. A giant Dy76 cluster: A new fused Bi-nanopillar structural modelin lanthanide clusters[J]. Angew. Chem., Int. Ed., 2019,58:10184-10188. doi: 10.1002/anie.201903817

    7. [7]

      Qin L, Yu Y Z, Liao P Q, Xue W, Zheng Z, Chen X M, Zheng Y Z. A "molecular water pipe": A giant tubular cluster {Dy72} exhibits fast proton transport and slow magnetic relaxation[J]. Adv. Mater., 2016,28:10772-10779. doi: 10.1002/adma.201603381

    8. [8]

      Li Y L, Wang H L, Zhu Z H, Liang F P, Zou H H. Giant crown-shaped Dy34 nanocluster with high acid-base stability assembled by an out-to-in growth mechanism[J]. Inorg. Chem., 2022,61:10101-10107. doi: 10.1021/acs.inorgchem.2c01175

    9. [9]

      Wang W M, Xin X Y, Qiao N, Wu Z L, Ling Li, Zou J Y. Self-assembly of octanuclear Ln (Ⅲ)-based clusters: Their large magnetocaloric effects and highly efficient conversion of CO2[J]. Dalton Trans., 2022,51:13957-13969. doi: 10.1039/D2DT01892F

    10. [10]

      Dong J, Cui P, Shi P F, Cheng P, Zhao B. Ultrastrong alkali-resisting lanthanide-zeolites assembled by[Ln60] nanocages[J]. J. Am. Chem. Soc., 2015,137:15988-15991. doi: 10.1021/jacs.5b10000

    11. [11]

      Shi D L, Yang X P, Xiao Z Y, Liu X M, Chen H F, Ma Y N, Schipper D, Jones R A. A 42-metal Yb (Ⅲ) nanowheel with NIR luminescent response to anions[J]. Nanoscale, 2020,12:1384-1388. doi: 10.1039/C9NR09151C

    12. [12]

      Yang X P, Wang S Q, Zhang Y L, Liang G, Zhu T, Zhang L J, Huang S M, Schipper D, Jones R A. A self-assembling luminescent lanthanide molecular nanoparticle with potential for live cell imaging[J]. Chem. Sci., 2018,9:4630-4637. doi: 10.1039/C8SC00650D

    13. [13]

      Ma Y N, Yang X P, Hao W X, Zhu T, Wang C, Schipper D. Ratiometric fluorescent detection of dipicolinic acid as an anthrax biomarker based on a high-nuclearity Yb18 nanoring[J]. Dalton Trans., 2021,50:13528-13532. doi: 10.1039/D1DT01731D

    14. [14]

      Ma Y N, Yang X P, Shi D L, Niu M Y, Schipper D. Construction of a 18-metal neodymium (Ⅲ) nanoring with NIR luminescent sensing to antibiotics[J]. Inorg. Chem., 2020,59:17608-17613. doi: 10.1021/acs.inorgchem.0c02840

    15. [15]

      Shi D L, Yang X P, Chen H F, Jiang D M, Liu J N, Ma Y N, Schipper D, Jones R A. Large Ln42 coordination nanorings: NIR luminescence sensing of metal ions and nitro explosives[J]. Chem. Commun., 2019,55:13116-13119. doi: 10.1039/C9CC07430A

    16. [16]

      Chen H F, Yang X P, Jiang D M, Schipper D, Jones R A. NIR luminescence for the detection of metal ions and nitro explosives based on a grape-like nine-nuclear Nd(Ⅱ) nanocluster[J]. Inorg. Chem. Front., 2019,6:550-555. doi: 10.1039/C8QI01166D

    17. [17]

      Shi D L, Yang X P, Ma Y N, Niu M Y, Jones R A. Construction of a high-nuclearity elliptical Yb (Ⅲ) nanoring: NIR luminescent response to metal ions and nitro explosives[J]. Inorg. Chem., 2020,59:14620-14626. doi: 10.1021/acs.inorgchem.0c02670

    18. [18]

      Hao W X, Yang X P, Ma Y N, Niu M Y, Shi D L, Schipper D. Construction of a high-nuclearity Nd (Ⅲ) nanoring for the NIR luminescent detection of antibiotics[J]. Dalton Trans., 2021,50:5865-5870. doi: 10.1039/D1DT00230A

    19. [19]

      Shi Y, Tang B, Jiang X L, Jiao Y E, Xu H, Zhao B. Highly effective CS2 conversion with aziridines catalyzed by novel [Dy24] nano-cages in MOFs under mild condition[J]. J. Mater. Chem. A, 2022,10:4889-4894. doi: 10.1039/D1TA10522A

    20. [20]

      Hou W, Wang G, Wu X J, Sun S Y, Zhao C Y, Liu W S, Pan F X. Lanthanide clusters as highly efficient catalysts regarding carbon dioxide activation[J]. New J. Chem., 2020,44:5019-5022. doi: 10.1039/C9NJ05831A

    21. [21]

      Zhang R L, Wang L, Xu C, Yang H, Chen W M, Gao G S, Liu W S. New lanthanide (Ⅲ) coordination polymers: Synthesis, structural features, and catalytic activity in CO2 fixations[J]. Dalton Trans., 2018,47:7159-7165. doi: 10.1039/C8DT01292J

    22. [22]

      Gao G S, Wang L, Zhang R L, Yang C, Xu H, Liu W S. Hexanuclear 3d-4f complexes as efficient catalysts for converting CO2 into cyclic carbonates[J]. Dalton Trans., 2019,48:3941-3945. doi: 10.1039/C8DT05048A

    23. [23]

      Dong J, Xu H, Hou S L, Wu Z L, Zhao B. Metal-organic frameworks with Tb 4 clusters as nodes: Luminescent detection of chromium (Ⅵ) and chemical fixation of CO2[J]. Inorg. Chem., 2017,56:6244-6250. doi: 10.1021/acs.inorgchem.7b00323

    24. [24]

      Xu H, Zhai B, Cao C S, Zhao B. A Bifunctional europium-organic framework with chemical fixation of CO2 and luminescent detection of Al3+[J]. Inorg. Chem., 2016,55:9671-9676. doi: 10.1021/acs.inorgchem.6b01407

    25. [25]

      Song T Q, Dong J, Yang A F, Che X J, Gao H L, Cui J Z, Zhao B. Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2[J]. Inorg. Chem., 2018,57:3144-3150. doi: 10.1021/acs.inorgchem.7b03142

    26. [26]

      Xue S F, Zhao L, Guo Y N, Zhang P, Tang J K. The use of a versatile o-vanilloyl hydrazone ligand to prepare SMM-like Dy3 molecular cluster pair[J]. Chem. Commun., 2012,48:8946-8948. doi: 10.1039/c2cc34737g

    27. [27]

      Katagiri S, Tsukahara Y, Hasegawa Y, Wada Y. Energy-transfer mechanism in photoluminescent terbium (Ⅲ) complexes causing their temperature-dependence[J]. Bull. Chem. Soc. Jpn., 2007,80:1492-1503. doi: 10.1246/bcsj.80.1492

    28. [28]

      Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008,64:112-122. doi: 10.1107/S0108767307043930

    29. [29]

      Wang W M, Wu Z L, Cui J Z. Molecular assemblies from linear-shaped Ln4 clusters to Ln8 clusters using different β-diketonates: Disparate magnetocaloric effects and single-molecule magnet behaviours[J]. Dalton Trans., 2021,50:12931-12943. doi: 10.1039/D1DT01344K

    30. [30]

      Wang W M, Kang X M, Shen H Y, Wu Z L, Gao H L, Cui J Z. Modulating single-molecule magnet behavior towards multiple magnetic rrelaxation processes through structural variation in Dy4 clusters[J]. Inorg. Chem. Front., 2018,5:1876-1885. doi: 10.1039/C8QI00214B

    31. [31]

      Wang W M, Wu Z L, Zhang Y X, Wei H Y, Gao H L, Cui J Z. Self-assembly of tetra-nuclear lanthanide clusters via atmospheric CO2 fixation: Interesting solvent-induced structures and magnetic relaxation conversions[J]. Inorg. Chem. Front., 2018,5:2346-2354. doi: 10.1039/C8QI00573G

    32. [32]

      Wang W M, He L Y, Wang X X, Shi Y, Wu Z L, Cui J Z. Linear-shaped Ln4 and Ln6 clusters constructed by a polydentate schiff base ligand and a β-diketone co-ligand: Structures, fluorescence properties, magnetic refrigeration and single-molecule magnet behavior[J]. Dalton Trans., 2019,48:16744-16755. doi: 10.1039/C9DT03478A

    33. [33]

      Yang H, Gao G S, Chen W M, Wang L, Liu W S. Self-assembly of tetranuclear 3d-4f helicates as highly efficient catalysts for CO2 cycloaddition reactions under mild conditions[J]. Dalton Trans., 2020,49:10270-10277. doi: 10.1039/D0DT01743D

    34. [34]

      Wang L, Zhang R L, Han Q X, Xu C, Chen W M, Yang H, Gao G S, Qin W W, Liu W S. Amide-functionalized heterometallic helicate cages as highly efficient catalysts for CO2 conversion under mild conditions[J]. Green Chem., 2018,20:5311-5317. doi: 10.1039/C8GC02645A

    35. [35]

      Wang L, Xu C, Han Q X, Tang X L, Zhou P P, Zhang R L, Gao G S, Xu B H, Qin W W, Liu W S. Ambient chemical fixation of CO2 using a highly efficient heterometallic helicate catalyst system[J]. Chem. Commun., 2018,54:2212-2215. doi: 10.1039/C7CC09092G

    36. [36]

      Xu C, Liu Y, Wang L, Ma J X, Yang L Z, Pan F X, Kirillov A M, Liu W S. New lanthanide (Ⅲ) coordination polymers: Synthesis, structural features, and catalytic activity in CO2 fixation[J]. Dalton Trans., 2017,46:16426-16431. doi: 10.1039/C7DT03574H

    37. [37]

      Wang W M, Wang W T, Wang M Y, Gu A L, Hu T D, Zhang Y X, Wu Z L. Framework assembled by[Cu12] nanocages: Highly efficient CO2 capture and chemical fixation and theoretical DFT calculations[J]. Inorg. Chem., 2021,60:9122-9131. doi: 10.1021/acs.inorgchem.1c01104

    38. [38]

      Qiao N, Xin X Y, Guan X F, Zhang C X, Wang W M. Self-assembly bifunctional tetranuclear Ln2Ni2 clusters: Magnetic behaviors and highly efficient conversion of CO2 under mild conditions[J]. Inorg. Chem., 2022,61:15098-15107. doi: 10.1021/acs.inorgchem.2c02180

    39. [39]

      Cao C S, Shi Y, Xu H, Zhao B. A multifunctional MOF as a recyclable catalyst for the fixation of CO2 with aziridines or epoxides and as a luminescent probe of Cr (Ⅵ)[J]. Dalton Trans., 2018,47:4545-4553. doi: 10.1039/C8DT00254A

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    6. [6]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    7. [7]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    8. [8]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    9. [9]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    10. [10]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    11. [11]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    12. [12]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    13. [13]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    14. [14]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    15. [15]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    16. [16]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    17. [17]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    18. [18]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

Metrics
  • PDF Downloads(5)
  • Abstract views(600)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return