Citation: Quan-Liang YANG, Meng-Jiao XU, Xia FENG, ROUZITUOHUTI Amannisaihan, MULATI Kulisen, JUMA Asihati. Preparation, luminescence properties, and energy transfer of color-tunable whitlockite-type Ca8MgBi(PO4)7∶Ce3+, Tb3+ phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 415-421. doi: 10.11862/CJIC.2023.016 shu

Preparation, luminescence properties, and energy transfer of color-tunable whitlockite-type Ca8MgBi(PO4)7∶Ce3+, Tb3+ phosphors

  • Corresponding author: Meng-Jiao XU, xmj_1117@163.com
  • Received Date: 26 July 2022
    Revised Date: 3 January 2023

Figures(4)

  • A series of Ca8MgBi(PO4)7∶Ce3+, Tb3+ phosphors with whitlockite-type structure and adjustable color were prepared by the high-temperature solid-phase method. The phase composition, microstructure, and luminescence properties were studied by X-ray powder diffraction (XRD), scanning electron microscope (SEM), and fluorescence spectroscopy. X-ray diffraction results confirmed doping a small amount of Ce3+ and Tb3+ did not change the crystal structure of the matrix. The energy transfer between Ce3+-Tb3+ was confirmed by the fluorescence spectrum and fluorescence lifetime curve. The energy transfer mechanism was quadrupole-quadrupole interaction, and the energy transfer efficiency could reach 81%. The emission color of the series Ca8MgBi(PO4)7∶0.08Ce3+, yTb3+ phosphors can be adjusted from blue light to green light by changing the doping concentrations of Tb3+, realizing the controllable emission color change.
  • 加载中
    1. [1]

      Zhang X J, Yu J B, Wang J, Lei B F, Liu Y L, Chou Y J, Xie R J, Zhang H W, Li Y R, Tian Z F, Li Y, Su Q. All-inorganic light convertor based on phosphor-in-glass engineering for nextgeneration modular high-brightness white LEDs/LDs[J]. ACS Photonics, 2017,4(4):986-995. doi: 10.1021/acsphotonics.7b00049

    2. [2]

      George N C, Denault K A, Seshadri R. Phosphors for solid-state white lighting[J]. Annu. Rev. Mater. Res., 2013,43:481-501. doi: 10.1146/annurev-matsci-073012-125702

    3. [3]

      McKittrick J, Shea-Rohwer L E. Review: Down conversion materials for solid-state lighting[J]. J. Am. Ceram. Soc., 2014,97:1327-1352. doi: 10.1111/jace.12943

    4. [4]

      Zhang J, Shi Y R, An S S. Photoluminescence properties of Ca9La (PO4)5SiO4F2: Ce3+/Tb3+/Mn2+ phosphors for applications in white light-emitting diodes and optical thermometers[J]. Spectrochim. Acta A, 2020,229(15)117886.

    5. [5]

      Cheng J, Zhang J, Bian X T, Zhai Z Y, Shi J. Photoluminescence properties, Judd-Ofelt analysis, and optical temperature sensing of Eu3+-doped Ca3La7(SiO4)5(PO4) O2 luminescent materials[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,230118057. doi: 10.1016/j.saa.2020.118057

    6. [6]

      Nohara A, Takeshita S, Isobe T. Mixed-solvent strategy for solvothermal synthesis of well-dispersed YBO3: Ce3+, Tb3+ nanocrystals[J]. RSC Adv., 2014,22:11219-11224.

    7. [7]

      Feng N N, Bai S W, Wang C L, Wu G, Zhang G Q, Yang J G. Energy transfer and thermal stability of novel green-emitting Ca3Y (PO4)3: Ce3+, Tb3+ phosphors for white LEDs[J]. Opt. Mater., 2019,96109317. doi: 10.1016/j.optmat.2019.109317

    8. [8]

      Huo J S, Lv W, Shao B Q, Feng Y, Zhao S, You H P. Color tunable emission via efficient Ce3+/Tb3+ energy transfer pair in MgYSi2O5N oxynitride phosphor for near-UV-pumped white LEDs[J]. Dyes Pigment., 2017,139:174-179. doi: 10.1016/j.dyepig.2016.12.012

    9. [9]

      Leng Z H, Li L P, Che X L, Li G S. A bridge role of Tb3+ in broadband excited Sr3Y (PO4)3: Ce3+, Tb3+, Sm3+ phosphors with superior thermal stability[J]. Mater. Des., 2017,118:245-255. doi: 10.1016/j.matdes.2017.01.038

    10. [10]

      Zhang X G, Huang Y M, Gong M L. Dual-emitting Ce3+, Tb3+ codoped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing[J]. Chem. Eng. J., 2017,307:291-299. doi: 10.1016/j.cej.2016.08.087

    11. [11]

      Yang C, Peng Z J, Hu J, Zhao P H, Shen S H, Song K X. Nitriding improvement of luminescence properties and energy-transfer behaviors of LaMgAl11-xSi3x/4O19-3x/2Nx: 0.55Ce3+, 0.25Tb3+ phosphors for UV-light pumping lamps[J]. Opt. Mater., 2022,124111980. doi: 10.1016/j.optmat.2022.111980

    12. [12]

      Jeong G J, Kang T W, Park Y J, Park Y J, Kim S W, Jeong G J, Lee Y, Park Y J, Bae B. Development of a cyan blue-emitting Ba3La2(BO3)4: Ce3+, Tb3+ phosphor for use in dental glazing materials: Color tunable emission and energy transfer[J]. RSC Adv., 2021,11(40):24949-24957. doi: 10.1039/D1RA04384F

    13. [13]

      Du W H, Zhang N, Zhuo N Z, Xie L Y, Jiang T, Zhu Y H, Cheng S W, Wang H B. Photoluminescence properties and energy transfer of apatite-type Sr3LaNa (PO4)3F: Ce3+, Tb3+ phosphors[J]. Mater. Res. Express, 2021,6(12)126209.

    14. [14]

      Jiao M M, Dong L P, Xu Q F, Zhang L C, Wang D H, Yang C L. The structures and luminescence properties of Sr4Gd3Na3(PO4)6F2: Ce3+, Tb3+ green phosphors with zero-thermal quenching of Tb3+ for WLEDs[J]. Dalton Trans., 2020,49(3):667-674. doi: 10.1039/C9DT04320A

    15. [15]

      Li K, Lian H Z, Han Y Q, Shang M M, Deun R V, Lin J. BaLu6(Si2O7)2(Si3O10): Ce3+, Tb3+: A novel blue-green emission phosphor via energy transfer for UV LEDs[J]. Dyes Pigment., 2017,139:701-707. doi: 10.1016/j.dyepig.2016.12.059

    16. [16]

      Xiao Y, Hao Z D, Zhang L L, Xiao W G, Wu D, Zhang X, Pan G H, Luo Y S, Zhang J H. Highly efficient green-emitting phosphors Ba2Y5B5O17 with low thermal quenching due to fast energy transfer from Ce3+ to Tb3+[J]. Inorg. Chem., 2017,56(8):4538-4544. doi: 10.1021/acs.inorgchem.7b00085

    17. [17]

      Li K, Shang M M, Zhang Y, Fan J, Lian H Z, Lin J. Photoluminescence properties of single-component white-emitting Ca9Bi (PO4)7: Ce3+, Tb3+, Mn2+ phosphors for UV LEDs[J]. J. Mater. Chem. C, 2015,3(27):7096-7104. doi: 10.1039/C5TC00927H

    18. [18]

      Deyneko D V, Nikiforov I V, Spassky D A, Dikhtyar Y Y, Aksenov S M, Stefanovich A Y, Lazoryak B I. Luminescence of Eu3+ as a probe for the determination of the local site symmetry in β-Ca3(PO4)2-related structures[J]. CrystEngComm, 2019,21(35):5235-5242. doi: 10.1039/C9CE00931K

    19. [19]

      Li K, Zhang Y, Li X J, Shang M M, Lian H Z, Lin J. Tunable blue-green emission and energy transfer properties in β-Ca3(PO4)2: Eu2+, Tb3+ phosphors with high quantum efficiencies for UV-LEDs[J]. Dalton Trans., 2015,44(10):4683-4692. doi: 10.1039/C4DT03720K

    20. [20]

      Wang J D, Shang M M, Cui M, Dang P P, Liu D J, Huang D Y, Lian H Z, Lin J. Realizing an impressive red-emitting Ca9MnNa (PO4)7 phosphor through a dual function based on disturbing structural confinement and energy transfer[J]. J. Mater. Chem. C, 2020,8(1):285-295. doi: 10.1039/C9TC05768D

    21. [21]

      Bu X Y, Liu Y G, Wang B C, Mi R Y, Wang Z Y, Huang Z H. Photoluminescent properties of single-phase white-light Ca8ZnGd (PO4)7: Eu2+, Mn2+ phosphor[J]. Chem. Phys. Lett., 2020,743137185. doi: 10.1016/j.cplett.2020.137185

    22. [22]

      Long J Q, Wang Y Z, Ma C Y, Yuan X Y, Dong W F, Ma R, Wen Z C, Du M M, Cao Y G. Photoluminescence tuning of Ca8-xSrxMgGd (PO4)7: Eu2+, yMn2+ phosphors for applications in white LEDs with excellent color rendering index[J]. RSC Adv., 2017,7(31):19223-19230. doi: 10.1039/C6RA28594E

    23. [23]

      Zheng Z, Tang W J. Tunable luminescence and energy transfer of Ce3+/Eu2+/Mn2+-tridoped Sr8MgLa (PO4)7 phosphor for white light LEDs[J]. J. Alloy. Compd., 2016,663:731-737. doi: 10.1016/j.jallcom.2015.12.184

    24. [24]

      Zhang Z W, Ren Y J, Liu L, Zhang J P, Peng Y S. Synthesis and luminescence of Eu3+-doped in triple phosphate Ca8MgBi (PO4)7 with whitlockite structure[J]. Luminescence, 2015,30:1190-1194. doi: 10.1002/bio.2878

    25. [25]

      Wen D W, Dong Z Y, Shi J X, Gong M, Wu M M. Standard white-emitting Ca8MgY (PO4)7: Eu2+, Mn2+ phosphor for white-light-emitting LEDs[J]. ECS J. Solid State Sci. Technol., 2013,2(9):178-185.

    26. [26]

      Pires A M, Davilos M R. Luminescence of europium(Ⅲ) and manganese(Ⅱ) in barium and zinc orthosilicate[J]. Chem. Mater., 2001,13:21-27. doi: 10.1021/cm000063g

    27. [27]

      Yang F, Ma H X, Liu Y F, Liu Q B, Yang Z P, Han Y. A new green luminescent material Ba3Bi (PO4)3: Tb3+[J]. Ceram. Int., 2013,39:2127-2130. doi: 10.1016/j.ceramint.2012.07.053

    28. [28]

      Liu C M, Hou D J, Yan J, Zhou L, Kuang X J, Liang H B, Huang Y, Zhang B B, Tao Y. Energy transfer and tunable luminescence of NaLa (PO3)4: Tb3+/Eu3+ under VUV and low-voltage electron beam excitation[J]. J. Phys. Chem. C, 2014,118(6):3220-3229. doi: 10.1021/jp410131q

    29. [29]

      Liu H K, Luo Y, Mao Z Y, Liao L B, Xia Z G. A novel single-composition trichromatic white-emitting Sr3.5Y6.5O2(PO4)1.5(SiO4)4.5: Ce3+/Tb3+/Mn2+ phosphor: Synthesis, luminescent properties and applications for white LEDs[J]. J. Mater. Chem. C, 2014,2:1619-1627. doi: 10.1039/c3tc32003k

    30. [30]

      Zhao M X, Zhao Z J, Yang L Q, Dong L L, Xia A Q, Chang S Y, Wei Y H, Liu Z P. The generation of energy transfer from Ce3+ to Eu3+ in LaPO 4:Ce3+/Tb3+/Eu3+ phosphors[J]. J. Lumin., 2018,194:297-302. doi: 10.1016/j.jlumin.2017.10.041

    31. [31]

      Shi Y R, Cheng P, Chen J, Tong Y P, Wang C. Color tunable emission via Ce3+-Tb3+ energy transfer in CaHfO3 phosphor[J]. J. Mater. Sci.: Mater. Electron., 2019,30(19):17798-17803. doi: 10.1007/s10854-019-02131-0

    32. [32]

      Blasse G. Energy transfer between inequivalent Eu ions[J]. J. Solid. State. Chem., 1986,2:207-211.

    33. [33]

      Dexter D L. A theory of sensitized luminescence in solids[J]. J. Chem. Phys., 1953,21:836-850. doi: 10.1063/1.1699044

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    15. [15]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    16. [16]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    20. [20]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

Metrics
  • PDF Downloads(4)
  • Abstract views(457)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return