Citation: Jing-Hong LIU, Qin GUI, Jian-Ming OUYANG. Effect of seaweed polysaccharides with different sulfate group contents on crystal growth of calcium oxalate and on the repair of damaged renal epithelial cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 465-474. doi: 10.11862/CJIC.2023.015 shu

Effect of seaweed polysaccharides with different sulfate group contents on crystal growth of calcium oxalate and on the repair of damaged renal epithelial cells

  • Corresponding author: Jian-Ming OUYANG, toyjm@jnu.edu.cn
  • Received Date: 2 September 2022
    Revised Date: 6 December 2022

Figures(9)

  • X-ray diffraction, Fourier transform infrared spectrometer, scanning electron microscope, ζ potential analyzer, and inductively coupled plasma emission spectrometer were used to compare the regulation of four degraded seaweed polysaccharides with a similar molecular weight of about 3700 Da and different contents of sulfate group (—OSO3-) on the inhibition of crystal growth of calcium oxalate (CaC2O4), and the repair ability of the polysaccharides on damaged renal epithelial cells was compared by cell experiments. These four seaweed polysaccharides were degraded Porphyra polysaccharide (PY-1), degraded Gracilaria lemaneiformis polysaccharide (GL-2), degraded Sargassum fusiforme polysaccharide (SF-3) and degraded Undaria pinnatifida polysaccharide (UP-4), and their —OSO3- contents were 17.9%, 13.3%, 8.2%, and 5.5%, respectively. The results showed that these four polysaccharides could inhibit the growth of calcium oxalate monohydrate (COM), induce the formation of calcium oxalate dihydrate (COD), increase the concentration of soluble Ca2+ ions in solution, and increase the absolute value of ζ potential on the crystal surface, thereby reducing the degree of crystal aggregation. In addition, these polysaccharides could repair HK-2 cells damaged by oxalic acid, increase cell viability and superoxide dismutase (SOD) activity, and reduce the release of malondialdehyde (MDA). The results show that the higher the content of —OSO3- in polysaccharides, the stronger the inhibitory effect of polysaccharides on CaC2O4 crystal growth and the repair effect on damaged HK-2 cells.
  • 加载中
    1. [1]

      Wang Z, Zhang Y, Zhang J W, Deng Q, Liang H. Recent advances on the mechanisms of kidney stone formation[J]. Int. J. Mol. Med., 2021,48(2):1-10.

    2. [2]

      Vidavsky N, Kunitake J A M R, Estroff L A. Multiple pathways for pathological calcification in the human body[J]. Adv. Healthcare Mater., 2021,10(4)2001271. doi: 10.1002/adhm.202001271

    3. [3]

      D'costa M R, Haley W E, Mara K C, Enders F T, Vrtiska T J, Pais V M, Jacobsen S J, Mccollough C H, Lieske J C, Rule A D. Symptomatic and radiographic manifestations of kidney stone recurrence and their prediction by risk factors: A prospective cohort study[J]. J. Am. Soc. Nephrol., 2019,30(7):1251-1260. doi: 10.1681/ASN.2018121241

    4. [4]

      Gillams K, Juliebø-Jones P, Juliebø S Ø, Somani B K. Gender differences in kidney stone disease (KSD): Findings from a systematic review[J]. Curr. Urol. Rep., 2021,22(10):1-8.

    5. [5]

      Wigner P, Grębowski R, Bijak M, Szemraj J, Saluk -Bijak J. The molecular aspect of nephrolithiasis development[J]. Cells, 2021,10(8)1926. doi: 10.3390/cells10081926

    6. [6]

      Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y. Epidemiology of stone disease across the world[J]. World J. Urol., 2017,35(9):1301-1320. doi: 10.1007/s00345-017-2008-6

    7. [7]

      Bhadja P, Lunagariya J, Ouyang J M. Seaweed sulphated polysaccharide as an inhibitor of calcium oxalate renal stone formation[J]. J. Funct. Foods, 2016,27:685-694. doi: 10.1016/j.jff.2016.10.016

    8. [8]

      Huang L S, Sun X Y, Gui Q, Ouyang J M. Effects of plant polysaccharides with different carboxyl group contents on calcium oxalate crystal growth[J]. CrystEngComm, 2017,19(32):4838-4847. doi: 10.1039/C7CE00983F

    9. [9]

      Chen X W, Sun X Y, Tang G H, Ouyang J M. Sulfated Undaria pinnatifida polysaccharide inhibits the formation of kidney stones by inhibiting HK -2 cell damage and reducing the adhesion of nano -calcium oxalate crystals[J]. Biomaterials Advances, 2021,134112564.

    10. [10]

      Bhadja P, Tan C Y, Ouyang J M, Yu K. Repair effect of seaweed polysaccharides with different contents of sulfate group and molecular weights on damaged HK-2 cells[J]. Polymers, 2016,8(5)188. doi: 10.3390/polym8050188

    11. [11]

      Ye H, Zhou C H, Li W, Hu B, Wang X Q, Zeng X X. Structural elucidation of polysaccharide fractions from brown seaweed Sargassum pallidum[J]. Carbohydr. Polym., 2013,97(2):659-664. doi: 10.1016/j.carbpol.2013.05.059

    12. [12]

      Zhou C S, Yu X J, Zhang Y Z, He R H, Ma H L. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea[J]. Carbohydr. Polym., 2012,87(3):2046-2051. doi: 10.1016/j.carbpol.2011.10.026

    13. [13]

      Fan Y L, Wang W H, Song W, Chen H S, Teng A G, Liu A J. Partial characterization and anti -tumor activity of an acidic polysaccharide from Gracilaria lemaneiformis[J]. Carbohydr. Polym., 2012,88(4):1313-1318. doi: 10.1016/j.carbpol.2012.02.014

    14. [14]

      Skriptsova A V, Shevchenko N M, Zvyagintseva T N, Imbs T I. Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta)[J]. J. Appl. Phycol., 2010,22(1):79-86. doi: 10.1007/s10811-009-9438-5

    15. [15]

      Ma X T, Sun X Y, Yu K, Gui B S, Gui Q, Ouyang J M. Effect of content of sulfate groups in seaweed polysaccharides on antioxidant activity and repair effect of subcellular organelles in injured HK -2 cells[J]. Oxidative Med. Cell. Longev., 2017,20172542950.

    16. [16]

      Wang K P, Wang J, Li Q, Zhang Q L, You R X, Cheng Y, Luo L, Zhang Y. Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes[J]. Food Res. Int., 2014,62:223-232. doi: 10.1016/j.foodres.2014.02.047

    17. [17]

      Liu J, Xu L, Gui W, Dorjpalam N, Gerile W L. The study on the antioxidant activity of polysaccharides isolated from Polygonatum odoratum (Mill.) Druce[J]. Mongolian J. Chem., 2020,21(47):12-18. doi: 10.5564/mjc.v21i47.1154

    18. [18]

      Vardizadeh F, Babaei S, Naseri M, Golmakani M T. Effect of marine sulfated polysaccharides derived from Persian Gulf seaweeds on Oncorhynchus mykiss oil stability under accelerated storage conditions[J]. Algal Res., 2021,60102553. doi: 10.1016/j.algal.2021.102553

    19. [19]

      Chen X W, Huang W B, Sun X Y, Xiong P, Ouyang J M. Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth[J]. Mater. Sci. Eng. C- Mater. Biol. Appl., 2021,128112338. doi: 10.1016/j.msec.2021.112338

    20. [20]

      Selvaraju R, Thiruppathi G, Raja A. FT-IR spectral studies on certain human urinary stones in the patients of rural area[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2012,93:260-265. doi: 10.1016/j.saa.2012.03.028

    21. [21]

      Ouyang J M, Duan L, Tieke B. Effects of carboxylic acids on the crystal growth of calcium oxalate nanoparticles in lecithin-water liposome systems[J]. Langmuir, 2003,19(21):8980-8985. doi: 10.1021/la0208777

    22. [22]

      Chatterjee P, Chakraborty A, Mukherjee A K. Phase composition and morphological characterization of human kidney stones using IR spectroscopy, scanning electron microscopy and X-ray Retveld analysis[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018,200:33-42. doi: 10.1016/j.saa.2018.04.005

    23. [23]

      Yang W J, Huang G L, Chen F, Huang H L. Extraction/synthesis and biological activities of selenopolysaccharide[J]. Trends Food Sci. Technol., 2021,109:211-218. doi: 10.1016/j.tifs.2021.01.028

    24. [24]

      Meng M, Zhang R, Han R, Kong Y, Wang R H, Hou L H. The polysaccharides from the Grifola frondosa fruiting body prevent lipopolysaccharide/D-galactosamine-induced acute liver injury via the miR-122-Nrf2/ARE pathways[J]. Food Funct., 2021,12(5):1973-1982. doi: 10.1039/D0FO03327H

    25. [25]

      Abd El -Salam M, Bastos J K, Han J J, Previdi D, Coelho E B, Donate P M, Romero M F, Lieske J. The synthesized plant metabo-lite 3, 4, 5-tri-O-galloylquinic acid methyl ester inhibits calcium oxalate crystal growth in a Drosophila model, downregulates renal cell surface annexin A1 expression, and decreases crystal adhesion to cells[J]. J. Med. Chem., 2018,61(4):1609-1621. doi: 10.1021/acs.jmedchem.7b01566

    26. [26]

      Li S, Macaringue E G J, Zhou D H, Shi P, Tang W W, Gong J B. Discovering inhibitor molecules for pathological crystallization of CaOx kidney stones from natural extracts of medical herbs[J]. J. Ethnopharmacol., 2022,284114733. doi: 10.1016/j.jep.2021.114733

    27. [27]

      Dissayabutra T, Kalpongnukul N, Chindaphan K, Srisa-Art M, Ungjaroenwathana W, Kaewwongse M, Iampenkhae K, Tosukhowong P. Urinary sulfated glycosaminoglycan insufficiency and chondroitin sulfate supplement in urolithiasis[J]. PLOS One, 2019,14(3)e0213180. doi: 10.1371/journal.pone.0213180

    28. [28]

      Gomes D L, Melo K R T, Queiroz M F, Batista L, Santos P, Costa M, Lima J, Camara R, Costa L, Rocha H. In vitro studies reveal antiuro-lithic effect of antioxidant sulfated polysaccharides from the green seaweed Caulerpa cupressoides var flabellata[J]. Mar. Drugs, 2019,17(6)326. doi: 10.3390/md17060326

    29. [29]

      Jung T S, Kim W S, Choi C K. Biomineralization of calcium oxalate for controlling crystal structure and morphology[J]. Mater. Sci. Eng. C- Mater. Biol. Appl., 2004,24(1/2):31-33.

    30. [30]

      Gan Q Z, Sun X Y, Bhadja P, Yao X Q, Ouyang J M. Reinjury risk of nano -calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: Aggravation of crystal adhesion and aggregation[J]. Int. J. Nanomed., 2016,11:2839-2854.

    31. [31]

      Mitchell T, Yarlagadda V, Patel M, Knight J, Assimos D, Holmes R. Dietary oxalate induces monocyte mitochondrial dysfunction and crystalluria in healthy subjects: A role of spinach in kidney stone disease?[J]. FASEB J., 2017,31:561-573.

    32. [32]

      Thamilselvan V, Menon M, Thamilselvan S. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: Effect of α -tocopherol and ascorbic acid[J]. BJU Int., 2014,114(1):140-150. doi: 10.1111/bju.12642

    33. [33]

      Yao R Y, Huang C, Chen X F, Yin Z Q, Fu Y P, Li L X, Feng B, Song X, He C L, Yue G Z, Jing B, Lv C, Su G, Ye G, Zou Y F. Two complement fixing pectic polysaccharides from pedicel of Lycium barbarum L. promote cellular antioxidant defense[J]. Int. J. Biol. Macromol., 2018,112:356-363. doi: 10.1016/j.ijbiomac.2018.01.207

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(2)
  • Abstract views(481)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return