Citation: Qi YUAN, Gao-Bin LIU, Sen WANG. Effect of B2O3-Bi2O3-ZnO-Al2O3 glass additive on sintering condition, crystal structure, and dielectric properties of BaTiO3 ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 485-491. doi: 10.11862/CJIC.2023.014 shu

Effect of B2O3-Bi2O3-ZnO-Al2O3 glass additive on sintering condition, crystal structure, and dielectric properties of BaTiO3 ceramics

  • Corresponding author: Sen WANG, wsenl@yeah.net
  • Received Date: 23 September 2022
    Revised Date: 12 December 2022

Figures(8)

  • The effects of B2O3-Bi2O3-ZnO-Al2O3 (BBZA) glass on the sintering conditions, crystal structure, and dielectric properties of barium titanate (BaTiO 3) ceramics were investigated. The results show that the addition of the appropriate amount of BBZA glass powder can effectively reduce the sintering temperature of BaTiO3 ceramics from 1 350 to 950 ℃ and make it densified. Consequently, the structure of BaTiO3 phase changed (cubic phase → tetragonal phase) with the increase of sintering temperature after adding BBZA glass. Additionally, the Curie peak of BaTiO3 ceramics were effectively suppressed and broadened. The ceramic microstructure showed that the glass phase was uniformly distributed on the surface of BaTiO3 grains. The optimized preparing conditions for the BaTiO3 ceramics were as follows: the addition (mass fraction) of BBZA glass was 2.0% and the sintering temperature was 950 ℃. The BaTiO3 ceramics prepared under these conditions had a dielectric constant of 1 364 and a dielectric loss as low as 1.2%. When the sintering temperature was higher than 950℃, the addition amount of BBZA glass should not be greater than 2.0%, too much BBZA glass will lead to the semiconducting of BaTiO3.
  • 加载中
    1. [1]

      Gotor F J, Perez-Maqueda L A, Criado J M. Synthesis of BaTiO3 by applying the sample controlled reaction temperature (SCRT) method to the thermal decomposition of barium titanyl oxalate[J]. J. Eur. Ceram. Soc., 2003,23(3):505-513. doi: 10.1016/S0955-2219(02)00099-7

    2. [2]

      ZHOU Z. Study on preparation and doping modification of barium titanate based ceramics. Guangzhou: Guangdong University of Technology, 2014: 3-11

    3. [3]

      Shaifudin M S, Ghazali M S M, Abdullah W R W, Lkhmal W M, Kassim S. Microstructure and electrical properties of low-voltage barium titanate doped zinc oxide varistor ceramics[J]. International Journal of Recent Technology and Engineering, 2019,8:2713-2718.

    4. [4]

      Glitzky C, Rabe T, Eberstein M, Schiller W A, Töpfer J, Barth S, Kipka A. LTCC-modules with integrated ferrite layers—Strategies for material development and Co-sintering[J]. J. Microelectron. Electron. Packag., 2009,6(1):49-53. doi: 10.4071/1551-4897-6.1.49

    5. [5]

      Valant M, Suvorov D, Pullar R C, Sarma K, Alford N M. A mechanism for low-temperature sintering[J]. J. Eur. Ceram. Soc., 2006,26(13):2777-2783. doi: 10.1016/j.jeurceramsoc.2005.06.026

    6. [6]

      Naghib-zadeh H, Glitzky C, Dörfel I, Rabe T. Low temperature sintering of barium titanate ceramics assisted by addition of lithium fluoridecontaining sintering additives[J]. J. Eur. Ceram. Soc., 2010,30(1):81-86. doi: 10.1016/j.jeurceramsoc.2009.07.005

    7. [7]

      Hsiang H I, Hsi C S, Huang C C, Fu S L. Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC[J]. J. Alloy. Compd., 2008,459(1/2):307-310.

    8. [8]

      Jeon H P, Lee S K, Kim S W, Choi D K. Effects of BaO-B2O3-SiO2 glass additive on densification and dielectric properties of BaTiO3 ceramics[J]. Mater. Chem. Phys., 2005,94(2/3):185-189.

    9. [9]

      Tian Y S, Gong Y S, Zhang Z L, Meng D W. Phase evolutions and electric properties of BaTiO3 ceramics by a low-temperature sintering process[J]. J. Mater. Sci.-Mater. Electron., 2014,25(12):5467-5474. doi: 10.1007/s10854-014-2330-3

    10. [10]

      Wang S, He H, Su H. Effect of Bi2O3 doping on the dielectric properties of medium-temperature sintering BaTiO3-based X8R ceramics[J]. J. Mater. Sci.-Mater. Electron., 2013,24(7):2385-2389. doi: 10.1007/s10854-013-1106-5

    11. [11]

      Sun C K, Wang X H, Ma C, Li L T. Low-temperature sintering barium titanate-based X8R ceramics with Nd2O3 dopant and ZnO-B2O3 flux agent[J]. J. Am. Ceram. Soc., 2009,92(7):1613-1616. doi: 10.1111/j.1551-2916.2009.03066.x

    12. [12]

      Fisher J G, Lee B K, Choi S Y, Wang S M, Kang S J L. Inhibition of abnormal grain growth in BaTiO3 by addition of Al2O3[J]. J. Eur. Ceram. Soc., 2006,26(9):1619-1628. doi: 10.1016/j.jeurceramsoc.2005.03.234

    13. [13]

      Chen Y, Ye H H, Wang X S, Li Y X, Yao X. Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics[J]. J. Eur. Ceram. Soc., 2020,40(2):391-400. doi: 10.1016/j.jeurceramsoc.2019.09.033

    14. [14]

      Buscaglia V, Buscaglia M T, Canu G. BaTiO3-based ceramics: Fundamentals, properties and applications//Encyclopedia of materials: Technical ceramics and glasses: Vol. 3. Elsevier, 2021: 311-344

    15. [15]

      Nièpce J C, Pizzagalli L. Structure and phase transitions in nanocrystals//Bréchignac C, Houdy P, Lahmani M. Nanomaterials and nanochemistry. Berlin, Heidelberg: Springer, 2008: 35-54

    16. [16]

      Wang H X, Zhao P Y, Chen L L, Li L T, Wang X H. Energy storage properties of 0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers[J]. J. Adv. Ceram., 2020,9(3):292-302.

    17. [17]

      Wei M, Zhang J H, Wu K T, Chen H W, Yang C R. Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics[J]. Ceram. Int., 2017,43(13):9593-9599. doi: 10.1016/j.ceramint.2017.03.139

    18. [18]

      Gao W L, Deng H M, Huang D J, Yang P X, Chu J H. Microstructure and optical properties of Zn-doped BaTiO3 thin films[J]. J. Phys.: Conf. Ser., 2011,276(1)012163.

    19. [19]

      Wang J, Huang Y F, Guo W L, Xing Z G, Wang H D, Lu Z L, Zhang Z N. First-principles calculations of electronic and optical properties of A and B site substituted BaTiO3[J]. Vacuum, 2021,193110530. doi: 10.1016/j.vacuum.2021.110530

    20. [20]

      Niu X, Jian X D, Chen X Y, Li H X, Liang W, Yao Y B, Tao T, Liang B, Lu S G. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement[J]. J. Adv. Ceram., 2021,10(3):482-492. doi: 10.1007/s40145-020-0450-1

    21. [21]

      Feteira A, Sarma K, Alford N M N, Reaney I M, Sinclair D C. Microwave dielectric properties of gallium-doped hexagonal barium titanate ceramics[J]. J. Am. Ceram. Soc., 2003,86(3):511-513. doi: 10.1111/j.1151-2916.2003.tb03330.x

    22. [22]

      Zhuo Q Z, Xiao P Z. Reduction of Ti4+ to Ti3+ in boron-doped BaTiO3 at very low temperature[J]. J. Am. Ceram. Soc., 2013,96(11):3504-3510. doi: 10.1111/jace.12512

    23. [23]

      Buscaglia V, Buscaglia M T, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorný J, Petzelt J. Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics[J]. J. Eur. Ceram. Soc., 2006,26(14):2889-2898. doi: 10.1016/j.jeurceramsoc.2006.02.005

    24. [24]

      El-Shaarawy M G, Rashad M M, Shash N M, Maklad M H, Afifi A F. Structural, AC conductivity, dielectric behavior and magnetic properties of Mg-substituted LiFe5O8 powders synthesized by sol-gel autocombustion method[J]. J. Mater. Sci.-Mater. Electron., 2015,26(8):6040-6050. doi: 10.1007/s10854-015-3181-2

    25. [25]

      Chiang C C, Wang S F, Wang Y R, Wei W C J. Densification and microwave dielectric properties of CaO-B2O3-SiO2 system glassceramics[J]. Ceram. Int., 2008,34(3):599-604. doi: 10.1016/j.ceramint.2006.12.008

    26. [26]

      Wang F, Lou Y H, Li Z J, Lei W, Lu Y, Dong Z W, Lu W Z. Improved flexural strength and dielectric loss in Al2O 3-based LTCC with La2O 3-CaO-B2O3-SiO2 glass[J]. Ceram. Int., 2021,47(7):9955-9960. doi: 10.1016/j.ceramint.2020.12.140

    27. [27]

      Cai W, Fu C L, Chen G, Gao R L, Deng X L. Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3-(1-x)BiFeO3 solid solution ceramics[J]. J. Mater. Sci.-Mater. Electron., 2015,26(1):322-330. doi: 10.1007/s10854-014-2403-3

    28. [28]

      Arshad M, Du H, Javed M S, Maqsood A, Ashraf I, Hussain S, Ma W, Ran H. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceram. Int., 2020,46(2):2238-2246. doi: 10.1016/j.ceramint.2019.09.208

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    4. [4]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    5. [5]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    6. [6]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    10. [10]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    11. [11]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    18. [18]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    19. [19]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    20. [20]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

Metrics
  • PDF Downloads(8)
  • Abstract views(543)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return