Citation: Zhi-Wen HU, Wei-Xia DONG, Qi-Fu BAO, Ping LI. Preparation and piezocatalytic properties of Rubik's cube-like nano-microstructure BaTiO3[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 475-484. doi: 10.11862/CJIC.2023.013 shu

Preparation and piezocatalytic properties of Rubik's cube-like nano-microstructure BaTiO3

  • Corresponding author: Wei-Xia DONG, weixia_dong@sina.com
  • Received Date: 16 September 2022
    Revised Date: 23 December 2022

Figures(11)

  • Rubik's cube-like nano-microstructure BaTiO 3 was synthesized via a simple solvothermal method by changing the molar ratio of Ba to Ti, and its piezocatalytic performance was characterized by degrading 5 mg·L-1 rhodamine B (RhB) solution. The morphology and phase structure of as-synthesized samples were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectra (FT-IR). The piezo-catalytic performance of synthesized BaTiO3 was investigated. The results exhibited that as-synthesized samples presented a Rubik's cube-like tetragonal BaTiO3 which assembled from cubes when the molar ratio of Ba to Ti was 1∶1. Under the condition of ultrasonic frequency of 40 kHz and ultrasonic power of 360 W, the degradation rate reached 90% at 180 min, the degradation rate was 79.7%, and changed to 11.4% after five cycles, which is superior to photocatalytic performance. During the degradation process, as-synthesized Rubik's cube-like BaTiO3 showed more excellent piezocatalytic performance with better piezocatalytic activity and durability than photocatalytic.
  • 加载中
    1. [1]

      He C P, Jing P P, Wang P F, Ji J M, Tao O Y, Cui Y F, Pu Y P. A novel hierarchical BaTiO3 AgI heterojunction with boosting spatial charge kinetics for photocatalytic degradation of organic pollutant[J]. Ceram. Int., 2021,47(23):33426-33434. doi: 10.1016/j.ceramint.2021.08.249

    2. [2]

      Hong K S, Xu H F, Konishi H, Li X C. Direct water splitting through vibrating piezoelectric microfibers in water[J]. J. Phys. Chem. Lett., 2010,1(6):997-1002. doi: 10.1021/jz100027t

    3. [3]

      Wu S Q, Hu Y H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics[J]. Chem. Eng. J., 2020,409(10)127739.

    4. [4]

      SUN Q W, XUE G L, ZHOU X F, LUO H, ZHOU K C, ZHANG D. Research progress in piezoelectric degradation of organic pollutants[J]. The Chinese Journal of Nonferrous Metals, 2021,31(8):1997-2013.  

    5. [5]

      Liu X F, Xiao L Y, Zhang Y, Sun H J. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye[J]. J. Materiomics, 2020,6(2):256-262. doi: 10.1016/j.jmat.2020.03.004

    6. [6]

      Liu D M, Jin C C, Shan F K, He J J, Wang F. Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics, and mechanism of piezocatalytic dye degradation[J]. ACS Appl. Mater. Interfaces, 2020,12(15):17443-17451. doi: 10.1021/acsami.9b23351

    7. [7]

      Jin C C, Liu D M, Hu J, Wang Y, Zhang Q, Lv L, Zhuge F W. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater[J]. Nano Energy, 2019,59:372-379. doi: 10.1016/j.nanoen.2019.02.047

    8. [8]

      Ni Y H, Zheng H S, Xiang N N, Yuan K F, Hong J M. Simple hydrothermal synthesis and photocatalytic performance of coral-like BaTiO3 nanostructures[J]. RSC Adv., 2014,5(10):7245-7252.

    9. [9]

      Zhao W, Zhang Q, Wang H G, Rong J C, Lei E, Dai Y J. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro -phototronic synergistic effect[J]. Nano Energy, 2020,73104783. doi: 10.1016/j.nanoen.2020.104783

    10. [10]

      Nagajyothi P C, Pandurangan M, Sreekanth T J S. In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route[J]. J. Photochem. Photobiol. B-Biol., 2016,156:29-34. doi: 10.1016/j.jphotobiol.2016.01.008

    11. [11]

      Li M, Gu L L, Li T, Hao S J. TiO2 -seeded hydrothermal growth of spherical BaTiO3 nanocrystals for capacitor energy -storage application[J]. Crystals, 2020,10(3)202. doi: 10.3390/cryst10030202

    12. [12]

      Shaaban K S, Koubisy M S I, Zahran H Y, Yahia I S. Spectroscopic properties, electronic polarizability, and optical basicity of titanium-cadmium tellurite glasses doped with different amounts of lanthanum[J]. J. Inorg. Organomet. Polym. Mater., 2020,30:4999-5008. doi: 10.1007/s10904-020-01640-4

    13. [13]

      Liu Z W, Zhao K, Xing G X, Zhang W X, Tang Y F. One-step synthesis of unique thorn -like BaTiO3 -TiO2 composite nanofibers to enhance piezo-photocatalysis performance[J]. Ceram. Int., 2021,47(5):7278-7284. doi: 10.1016/j.ceramint.2020.11.017

    14. [14]

      Dong W X, Zhao G L, Song B, Xu G, Zhou J, Han G R. Surfactant -free fabrication of CaTiO3 butterfly -like dendrite via a simple one -step hydrothermal route[J]. CrystEngComm, 2012,14:6990-6997. doi: 10.1039/c2ce25472g

    15. [15]

      Küçük Ö, Teber S, Kaya I C, Akyıldız H, Kalem V. Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers[J]. J. Alloy. Compd., 2018,765:82-91. doi: 10.1016/j.jallcom.2018.06.165

    16. [16]

      Ma Q, Kato K. Nucleation and growth mechanism of barium titanate nanoblocks in hydrothermal process using aqueous titanium compound[J]. J. Cryst. Growth, 2017,17:2507-2512. doi: 10.1021/acs.cgd.7b00025

    17. [17]

      Wu J R, Wang W W, Tian Y, Song C X, Qiu H, Xue H. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants[J]. Nano Energy, 2020,77105122. doi: 10.1016/j.nanoen.2020.105122

    18. [18]

      Li Y Y, Li R, Zhai Y, Huang Y, Lee S C, Cao J J. Improved photocatalytic activity of BaTiO3/La2Ti2O7 heterojunction composites via piezoelectric -enhanced charge transfer[J]. Appl. Surf. Sci., 2021,570(30)151146.

    19. [19]

      Liu X T, Shen X F, Sa B S, Zhang Y G, Li X, Xue H. Piezotronic -enhanced photocatalytic performance of heterostructured BaTiO3/SrTiO3 nanofibers[J]. Nano Energy, 2021,89106391. doi: 10.1016/j.nanoen.2021.106391

    20. [20]

      Zhang Y H, Shen G D, Sheng C H, Zhang F, Fan W. The effect of piezo -photocatalysis on enhancing the charge carrier separation in BaTiO3/KNbO3 heterostructure photocatalys[J]. Appl. Surf. Sci., 2021,562150164. doi: 10.1016/j.apsusc.2021.150164

    21. [21]

      Lin E Z, Kang Z H, Wu J, Huang R, Qin N, Bao D H. BaTiO3 nano-cubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism[J]. Appl. Catal. B -Environ., 2021,285119823. doi: 10.1016/j.apcatb.2020.119823

    22. [22]

      Qian W Q, Zhao K, Zhang D, Bowen C R, Wang Y H, Yang Y. Piezoelectric material -polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect[J]. ACS Appl. Mater. Interfaces, 2019,11(31):27862-27869. doi: 10.1021/acsami.9b07857

    23. [23]

      Wu J, Xu Q, Lin E Z, Yuan B W, Qin N, Santhosh K T, Bao D H. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3[J]. ACS Appl. Mater. Interfaces, 2018,10(21):17842-17849. doi: 10.1021/acsami.8b01991

    24. [24]

      Wu J, Qin N, Bao D H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018,45:44-51. doi: 10.1016/j.nanoen.2017.12.034

    25. [25]

      Gao S T, Xing H J, Zhang J J, Liu Y P, Du H W, Zhu Z J, Wang J Y, Li X, Zhang S W, Yao Y X, Ren L L. Oxalic acid functionalization of BaTiO3 nanobelts for promoting their piezo-degradation organic contaminants[J]. J. Materiomics, 2021,7(6):1275-1283. doi: 10.1016/j.jmat.2021.03.002

    26. [26]

      Liu Q, Zhai D, Xiao Z D, Tang C, Sun Q W, Chris R B, Luo H, Zhang D. Piezo -photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation[J]. Nano Energy, 2022,92106702. doi: 10.1016/j.nanoen.2021.106702

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(17)
  • Abstract views(677)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return