Citation: Ying-Min GUO, Hui ZHAO, Xue-Dong MA, Wei WANG, Yu-Kun MA, Cun-She ZHANG. Preparation and electrochemical properties of phenanthroline copper coordination Schiff base conducting polymers[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 395-405. doi: 10.11862/CJIC.2023.012 shu

Preparation and electrochemical properties of phenanthroline copper coordination Schiff base conducting polymers

  • Corresponding author: Wei WANG, wwchem@chd.edu.cn
  • Received Date: 14 July 2022
    Revised Date: 19 December 2022

Figures(10)

  • Preparation and electrochemical properties of Schiff base OTTP prepared from o-toluidine and p-benzal-dehyde polymers doped with various proportions of phenanthroline copper complexes. The copper coordination poly-mer [Cu(Phen)Cl2]X-OTTP (X was the molar ratio of Schiff base to phenanthroline copper coordination complex, X=1, 0.8, 0.6, 0.4, 0.2) of Schiff base phenanthroline was synthesized by doping different proportions of phenanthroline copper complexes in Schiff base. The morphology and structure of the products were investigated by scanning elec-tron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and the electrochemical performance of the electrode materials [Cu(Phen)Cl2]X-OTTP were analyzed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectrum (EIS). The results exhibited that the morphology of the polymer Schiff base changed after doping with phenanthroline copper complexes. After doping, the Schiff base was scaly, with more holes on the surface and the layered structure was destroyed. The matrix π-π stacking was affected. In 6 mol·L-1 KOH electrolyte three-electrode system, [Cu(Phen)Cl2]0.4-OTTP had a high specific capacity of 278 mAh·g-1 at the current density of 0.5 A·g-1. The assembled supercapacitor [Cu(Phen)Cl2]0.4-OTTP//AC (AC=activated carbon) had a power density of 276.99 W·kg-1 at the energy density of 26.16 Wh·kg-1, and kept original specific capacity of 97.13% after 10 000 GCD cycles at current density of 10 A·g-1.
  • 加载中
    1. [1]

      Bi Z H, Kong Q Q, Cao Y F, Sun G H, Su F Y, Wei X X, Li X M, Ahmad A, Xie L J. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. J. Mater. Chem. A, 2019,7(27):16028-16045. doi: 10.1039/C9TA04436A

    2. [2]

      Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chem. Soc. Rev., 2019,48(5):1272-1341. doi: 10.1039/C8CS00581H

    3. [3]

      Fleischmann S, Mitchell J B, Wang R, Zhan C, Jiang D E, Presser V, Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chem. Rev., 2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170

    4. [4]

      Kumar K S, Choudhary N, Jung Y, Thomas J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications[J]. ACS Energy Lett., 2018,3(2):482-495. doi: 10.1021/acsenergylett.7b01169

    5. [5]

      Raza W, Ali F, Raza N, Luo Y W, Kim K H, Yang J H, Kumar S, Mehmood A, Kwon E. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013

    6. [6]

      Wang H Y, Xu C M, Chen Y Q, Wang Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density[J]. Energy Storage Mater., 2017,8:127-133. doi: 10.1016/j.ensm.2017.05.007

    7. [7]

      Hosaka T, Kubota K, Hameed A S, Komaba S. Research development on K-ion batteries[J]. Chem. Rev., 2020,120(14):6358-6466. doi: 10.1021/acs.chemrev.9b00463

    8. [8]

      Poonam , Sharma K, Arora A, Tripathi S K. Review of supercapacitors: Materials and devices[J]. J. Energy Storage, 2019,21:801-825. doi: 10.1016/j.est.2019.01.010

    9. [9]

      Zhang S W, Yin B S, Liu X X, Gu D M, Gong H, Wang Z B. A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches[J]. Nano Energy, 2019,59:41-49. doi: 10.1016/j.nanoen.2019.02.001

    10. [10]

      Liu S, Kang L, Zhang J, Jung E, Lee S, Jun S C. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors[J]. Energy Storage Mater., 2020,32:167-177. doi: 10.1016/j.ensm.2020.07.017

    11. [11]

      Liu X, Hamon J R. Recent developments in penta-, hexa-and hepta-dentate Schiff base ligands and their metal complexes[J]. Coord. Chem. Rev., 2019,389:94-118. doi: 10.1016/j.ccr.2019.03.010

    12. [12]

      Li X P, Li J L, Kang F Y. Enhanced electrochemical performance of salen-type transition metal polymer with electron-donating substituents[J]. Ionics, 2019,25(3):1045-1055. doi: 10.1007/s11581-018-2819-5

    13. [13]

      Segura J L, Mancheño M J, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications[J]. Chem. Soc. Rev., 2016,45(20):5635-5671. doi: 10.1039/C5CS00878F

    14. [14]

      Su S J, Lai Q X, Liang Y Y. Schiff-base polymer derived nitrogen-rich microporous carbon spheres synthesized by molten-salt route for high-performance supercapacitors[J]. RSC Adv., 2015,5(75):60956-60961. doi: 10.1039/C5RA07628E

    15. [15]

      Zhao J J, Niu Y Z, Ren B, Chen H, Zhang S X, Jin J, Zhang Y. Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution[J]. Chem. Eng. J., 2018,347:574-584. doi: 10.1016/j.cej.2018.04.151

    16. [16]

      RONG H R, WANG X M, MA Y W, GAO G X, SU H Q, LAI L F, LIU Q. Three-dimensional cobalt-based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as a high-capacity electrode material for supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):206-212.  

    17. [17]

      Huang M, Li F, Dong F, Zhang Y X, Zhang L L. MnO2-based nano-structures for high-performance supercapacitors[J]. J. Mater. Chem. A, 2015,3(43):21380-21423. doi: 10.1039/C5TA05523G

    18. [18]

      DONG Y G, LI S J, LUO Y, YAO Y, LU C L, YANG J H. Electrochemical performance of high performance NiCoP-based supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(6):1062-1070.  

    19. [19]

      Zhu D Z, Jiang J X, Sun D M, Qian X Y, Wang Y W, Li L C, Wang Z W, Chai X L, Gan L H, Liu M X. A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors[J]. J. Mater. Chem. A, 2018,6(26):12334-12343. doi: 10.1039/C8TA02341G

    20. [20]

      Wang J, Yao H Y, Du C Y, Guan S W. Polyimide Schiff base as a high-performance anode material for lithium-ion batteries[J]. J. Power Sources, 2021,482228931. doi: 10.1016/j.jpowsour.2020.228931

    21. [21]

      Ye H J, Jiang F Q, Li H Q, Xu Z, Yin J, Zhu H. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries[J]. Electrochim. Acta, 2017,253:319-323. doi: 10.1016/j.electacta.2017.09.062

    22. [22]

      HUANG Y J. Synthesis and characterization of transition metal complexes constructed from phenanthroline derivatives and their catalytic degradation of dyes. Zhenjiang: Jiangsu University, 2012.

    23. [23]

      Xu H, Cao Y F, Li Y, Cao P, Liu D D, Zhang Y Y, Li Q W. High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance[J]. J. Energy Chem., 2020,50:240-247. doi: 10.1016/j.jechem.2020.03.023

    24. [24]

      Zan G T, Wu T, Hu P, Zhou S L, Xu S M, Chen J, Cui Y, Wu Q S. An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles[J]. Energy Storage Mater., 2020,28:82-90. doi: 10.1016/j.ensm.2020.02.027

    25. [25]

      Zhou Y F, Xu Y X, Lu B, Guo J Y, Zhang S Y, Lu Y. Schiff Base-functionalized cobalt-based metal organic framework microspheres with a sea urchin-like structure for supercapacitor electrode material[J]. J. Electroanal. Chem., 2019,847113248. doi: 10.1016/j.jelechem.2019.113248

    26. [26]

      Zhang K, Kirlikovali K O, Varma R S, Jin Z, Jang H W, Farha O K, Shokouhimehr M. Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications[J]. ACS Appl. Mater. Interfaces, 2020,12(25):27821-27852. doi: 10.1021/acsami.0c06267

    27. [27]

      Wang W X, Lu Y, Zhao M L, Luo R J, Yang Y, Peng T, Yan H L, Liu X M, Luo Y S. Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction[J]. ACS Nano, 2019,13(10):12206-12218. doi: 10.1021/acsnano.9b06910

    28. [28]

      Schlee P, Hosseinaei O, O'Keefe C A, Mostazo-López M J, Cazorla-Amorós D, Herou S, Tomani P, Grey C P, Titirici M M. Hardwood versus softwood Kraft lignin-precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors[J]. J. Mater. Chem. A, 2020,8(44):23543-23554. doi: 10.1039/D0TA09093J

  • 加载中
    1. [1]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    8. [8]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    9. [9]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    10. [10]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    11. [11]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    15. [15]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

Metrics
  • PDF Downloads(11)
  • Abstract views(2104)
  • HTML views(289)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return