Citation: Ying-Min GUO, Hui ZHAO, Xue-Dong MA, Wei WANG, Yu-Kun MA, Cun-She ZHANG. Preparation and electrochemical properties of phenanthroline copper coordination Schiff base conducting polymers[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 395-405. doi: 10.11862/CJIC.2023.012 shu

Preparation and electrochemical properties of phenanthroline copper coordination Schiff base conducting polymers

  • Corresponding author: Wei WANG, wwchem@chd.edu.cn
  • Received Date: 14 July 2022
    Revised Date: 19 December 2022

Figures(10)

  • Preparation and electrochemical properties of Schiff base OTTP prepared from o-toluidine and p-benzal-dehyde polymers doped with various proportions of phenanthroline copper complexes. The copper coordination poly-mer [Cu(Phen)Cl2]X-OTTP (X was the molar ratio of Schiff base to phenanthroline copper coordination complex, X=1, 0.8, 0.6, 0.4, 0.2) of Schiff base phenanthroline was synthesized by doping different proportions of phenanthroline copper complexes in Schiff base. The morphology and structure of the products were investigated by scanning elec-tron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and the electrochemical performance of the electrode materials [Cu(Phen)Cl2]X-OTTP were analyzed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectrum (EIS). The results exhibited that the morphology of the polymer Schiff base changed after doping with phenanthroline copper complexes. After doping, the Schiff base was scaly, with more holes on the surface and the layered structure was destroyed. The matrix π-π stacking was affected. In 6 mol·L-1 KOH electrolyte three-electrode system, [Cu(Phen)Cl2]0.4-OTTP had a high specific capacity of 278 mAh·g-1 at the current density of 0.5 A·g-1. The assembled supercapacitor [Cu(Phen)Cl2]0.4-OTTP//AC (AC=activated carbon) had a power density of 276.99 W·kg-1 at the energy density of 26.16 Wh·kg-1, and kept original specific capacity of 97.13% after 10 000 GCD cycles at current density of 10 A·g-1.
  • 加载中
    1. [1]

      Bi Z H, Kong Q Q, Cao Y F, Sun G H, Su F Y, Wei X X, Li X M, Ahmad A, Xie L J. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. J. Mater. Chem. A, 2019,7(27):16028-16045. doi: 10.1039/C9TA04436A

    2. [2]

      Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chem. Soc. Rev., 2019,48(5):1272-1341. doi: 10.1039/C8CS00581H

    3. [3]

      Fleischmann S, Mitchell J B, Wang R, Zhan C, Jiang D E, Presser V, Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chem. Rev., 2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170

    4. [4]

      Kumar K S, Choudhary N, Jung Y, Thomas J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications[J]. ACS Energy Lett., 2018,3(2):482-495. doi: 10.1021/acsenergylett.7b01169

    5. [5]

      Raza W, Ali F, Raza N, Luo Y W, Kim K H, Yang J H, Kumar S, Mehmood A, Kwon E. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013

    6. [6]

      Wang H Y, Xu C M, Chen Y Q, Wang Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density[J]. Energy Storage Mater., 2017,8:127-133. doi: 10.1016/j.ensm.2017.05.007

    7. [7]

      Hosaka T, Kubota K, Hameed A S, Komaba S. Research development on K-ion batteries[J]. Chem. Rev., 2020,120(14):6358-6466. doi: 10.1021/acs.chemrev.9b00463

    8. [8]

      Poonam , Sharma K, Arora A, Tripathi S K. Review of supercapacitors: Materials and devices[J]. J. Energy Storage, 2019,21:801-825. doi: 10.1016/j.est.2019.01.010

    9. [9]

      Zhang S W, Yin B S, Liu X X, Gu D M, Gong H, Wang Z B. A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches[J]. Nano Energy, 2019,59:41-49. doi: 10.1016/j.nanoen.2019.02.001

    10. [10]

      Liu S, Kang L, Zhang J, Jung E, Lee S, Jun S C. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors[J]. Energy Storage Mater., 2020,32:167-177. doi: 10.1016/j.ensm.2020.07.017

    11. [11]

      Liu X, Hamon J R. Recent developments in penta-, hexa-and hepta-dentate Schiff base ligands and their metal complexes[J]. Coord. Chem. Rev., 2019,389:94-118. doi: 10.1016/j.ccr.2019.03.010

    12. [12]

      Li X P, Li J L, Kang F Y. Enhanced electrochemical performance of salen-type transition metal polymer with electron-donating substituents[J]. Ionics, 2019,25(3):1045-1055. doi: 10.1007/s11581-018-2819-5

    13. [13]

      Segura J L, Mancheño M J, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications[J]. Chem. Soc. Rev., 2016,45(20):5635-5671. doi: 10.1039/C5CS00878F

    14. [14]

      Su S J, Lai Q X, Liang Y Y. Schiff-base polymer derived nitrogen-rich microporous carbon spheres synthesized by molten-salt route for high-performance supercapacitors[J]. RSC Adv., 2015,5(75):60956-60961. doi: 10.1039/C5RA07628E

    15. [15]

      Zhao J J, Niu Y Z, Ren B, Chen H, Zhang S X, Jin J, Zhang Y. Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution[J]. Chem. Eng. J., 2018,347:574-584. doi: 10.1016/j.cej.2018.04.151

    16. [16]

      RONG H R, WANG X M, MA Y W, GAO G X, SU H Q, LAI L F, LIU Q. Three-dimensional cobalt-based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as a high-capacity electrode material for supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):206-212.  

    17. [17]

      Huang M, Li F, Dong F, Zhang Y X, Zhang L L. MnO2-based nano-structures for high-performance supercapacitors[J]. J. Mater. Chem. A, 2015,3(43):21380-21423. doi: 10.1039/C5TA05523G

    18. [18]

      DONG Y G, LI S J, LUO Y, YAO Y, LU C L, YANG J H. Electrochemical performance of high performance NiCoP-based supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(6):1062-1070.  

    19. [19]

      Zhu D Z, Jiang J X, Sun D M, Qian X Y, Wang Y W, Li L C, Wang Z W, Chai X L, Gan L H, Liu M X. A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors[J]. J. Mater. Chem. A, 2018,6(26):12334-12343. doi: 10.1039/C8TA02341G

    20. [20]

      Wang J, Yao H Y, Du C Y, Guan S W. Polyimide Schiff base as a high-performance anode material for lithium-ion batteries[J]. J. Power Sources, 2021,482228931. doi: 10.1016/j.jpowsour.2020.228931

    21. [21]

      Ye H J, Jiang F Q, Li H Q, Xu Z, Yin J, Zhu H. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries[J]. Electrochim. Acta, 2017,253:319-323. doi: 10.1016/j.electacta.2017.09.062

    22. [22]

      HUANG Y J. Synthesis and characterization of transition metal complexes constructed from phenanthroline derivatives and their catalytic degradation of dyes. Zhenjiang: Jiangsu University, 2012.

    23. [23]

      Xu H, Cao Y F, Li Y, Cao P, Liu D D, Zhang Y Y, Li Q W. High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance[J]. J. Energy Chem., 2020,50:240-247. doi: 10.1016/j.jechem.2020.03.023

    24. [24]

      Zan G T, Wu T, Hu P, Zhou S L, Xu S M, Chen J, Cui Y, Wu Q S. An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles[J]. Energy Storage Mater., 2020,28:82-90. doi: 10.1016/j.ensm.2020.02.027

    25. [25]

      Zhou Y F, Xu Y X, Lu B, Guo J Y, Zhang S Y, Lu Y. Schiff Base-functionalized cobalt-based metal organic framework microspheres with a sea urchin-like structure for supercapacitor electrode material[J]. J. Electroanal. Chem., 2019,847113248. doi: 10.1016/j.jelechem.2019.113248

    26. [26]

      Zhang K, Kirlikovali K O, Varma R S, Jin Z, Jang H W, Farha O K, Shokouhimehr M. Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications[J]. ACS Appl. Mater. Interfaces, 2020,12(25):27821-27852. doi: 10.1021/acsami.0c06267

    27. [27]

      Wang W X, Lu Y, Zhao M L, Luo R J, Yang Y, Peng T, Yan H L, Liu X M, Luo Y S. Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction[J]. ACS Nano, 2019,13(10):12206-12218. doi: 10.1021/acsnano.9b06910

    28. [28]

      Schlee P, Hosseinaei O, O'Keefe C A, Mostazo-López M J, Cazorla-Amorós D, Herou S, Tomani P, Grey C P, Titirici M M. Hardwood versus softwood Kraft lignin-precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors[J]. J. Mater. Chem. A, 2020,8(44):23543-23554. doi: 10.1039/D0TA09093J

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(3)
  • Abstract views(772)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return