Citation: Zhong-Xue LONG, Wei LI, Dong-Fang LI, Jia-Hui JING, Shan-Shan LIU. Synthesis, crystal structure, luminescence, and density functional theory calculation of rare earth complexes based on 1-phenyl-3-methyl-4-benzoyl-5-pyrazolinone[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 385-394. doi: 10.11862/CJIC.2023.009 shu

Synthesis, crystal structure, luminescence, and density functional theory calculation of rare earth complexes based on 1-phenyl-3-methyl-4-benzoyl-5-pyrazolinone

Figures(7)

  • A series of mononuclear rare earth complexes [Ln(pmbp)3(dmbipy)]·C2H5OH, where Ln=Tb (1-Tb), Ho (1-Ho), Er (1-Er) and Tm (1-Tm), were synthesized by using 1-phenyl-3-methyl-4-benzoyl-5-pyrazolinone (Hpmbp) and 4,4'-dimethyl-2,2'-bipyridine (dmbipy) as ligands. Structure characterizations show that the complex is composed of one Ln3+ ion, three pmbp-ions, one dmbipy molecule, and one free ethanol molecule, yielding the [LnO6N2] type structure. The continuous shape measurement (CShM) analyses show that the Ln3+ centers exhibit a distorted triangular dodecahedral geometry. Luminescence measurements showed that all of the complexes exhibit characteristic emission peaks of the corresponding rare earth ions. And it was found that the ligand could sensitize Ho3+ and Er3+ well, while the sensitization of Tb3+ and Tm3+ was weak. In addition, the HOMO and LUMO of Hpmbp ligands, dmbipy ligands, and rare earth complexes were calculated and analyzed by the density functional theory method. It is found that for Tb, Ho, and Tm complexes with an odd number of electrons in the center metal atom, the bond lengths between metal ions and coordination atoms are shorter with the increasing number of electrons in metal ions, while the bond lengths of Er—O and Er—N of 1-Er are between those of 1-Ho and 1-Tm. For 1-Tb, 1-Ho, and 1-Tm, the orbital energy of HOMO and LUMO decreases with increasing electron number, which is consistent with the rule of bond length. For 1-Tb, 1-Ho and 1-Er, the HOMO-LUMO gap increases with the increase of electron number. In addition, the HOMO-LUMO energy gaps of the four complexes are lower than that of the ligands.
  • 加载中
    1. [1]

      Shang K X, He W T, Sun J, Hu D C. Synthesis, crystal structure and near-infrared luminescence of rare earth metal (Y, Er, Ho) complexes containing semirigid tricarboxylic acid ligand[J]. J. Mol. Struct., 2021,1246131097. doi: 10.1016/j.molstruc.2021.131097

    2. [2]

      Kovacs T A, Felinto M C F C, Paolini T B, Ali B, Nakamura L K O, Teotonio E E S, Brito H F, Malta O L. Synthesis and photoluminescence properties of [Eu(dbm)3·PX] and[Eu(acac)3·PX] complexes[J]. J. Lumin., 2018,193:98-105. doi: 10.1016/j.jlumin.2017.09.029

    3. [3]

      Ilmi R, Iftikhar K. Photophysical properties of lanthanide (Ⅲ) 1,1,1-trifluoro-2,4-pentanedione complexes with 2,2'-bipyridyl: An experimental and theoretical investigation[J]. J. Photochem. Photobiol. A-Chem., 2017,333:142-155. doi: 10.1016/j.jphotochem.2016.10.014

    4. [4]

      Zahariev T, Shandurkov D, Gutzov S, Trendafilova N, Enseling D, Justel T, Georgieva I. Phenanthroline chromophore as efficient antenna for Tb3+ green luminescence: A theoretical study[J]. Dyes Pigment., 2021,185108890. doi: 10.1016/j.dyepig.2020.108890

    5. [5]

      Cai L L, Hu Y T, Li Y, Wang K, Zhang X Q, Muller G, Li X M. Solid-state luminescence properties, Hirshfeld surface analysis and DFT calculations of mononuclear lanthanide complexes (Ln=Eu, Gd, Tb, Dy) containing 4'-phenyl-2,2': 6',2''-terpyridine[J]. Inorg. Chim. Acta, 2019,489:85-92. doi: 10.1016/j.ica.2019.02.001

    6. [6]

      Luo Y M, Li J, Xiao L X, Tang R R, Tang X C. Synthesis, characterization and fluorescence properties of Eu(Ⅲ) and Tb(Ⅲ) complexes with novel mono-substituted β-diketone ligands and 1,10-phenanthroline[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2009,72(4):703-708. doi: 10.1016/j.saa.2008.10.059

    7. [7]

      Yan B, Zhou B. Photophysical properties of dysprosium complexes with aromatic carboxylic acids by molecular spectroscopy[J]. J. Photochem. Photobiol. A-Chem., 2005,171(2):181-186. doi: 10.1016/j.jphotochem.2004.10.012

    8. [8]

      Wang Q M, Yan B, Zhang X H. Photophysical properties of novel lanthanide complexes with long chain mono-eicosyl cis-butene dicarboxylate[J]. J. Photochem. Photobiol. A-Chem., 2005,174(2):119-124. doi: 10.1016/j.jphotochem.2005.02.016

    9. [9]

      Jia J H, Li Q W, Chen Y C, Liu J L, Tong M L. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies[J]. Coord. Chem. Rev., 2019,378:365-381. doi: 10.1016/j.ccr.2017.11.012

    10. [10]

      De Silva C R, Li F Y, Huang C H, Zheng Z P. Europium β-diketonates for red-emitting electroluminescent devices[J]. Thin Solid Films, 2008,517(2):957-962. doi: 10.1016/j.tsf.2008.08.118

    11. [11]

      Yan B, Zhou B. Two photoactive lanthanide (Eu3+, Tb3+) hybrid materials of modified β-diketone bridge directly covalently bonded mesoporous host (MCM-41)[J]. J. Photochem. Photobiol. A-Chem., 2008,195:314-322. doi: 10.1016/j.jphotochem.2007.10.019

    12. [12]

      Albrecht M, Schmid S, Dehn S, Wickleder C, Zhang S, Bassett A P, Pikramenou Z, Frohilch C. Diastereoselective formation of luminescent dinuclear lanthanide (Ⅲ) helicates with enantiomerically pure tartaric acid derived bis (β-diketonate) ligands[J]. New J. Chem., 2007,31(10):1755-1762. doi: 10.1039/b705090a

    13. [13]

      Mello Donega C, Junior S A, Sa G F. Europium (Ⅲ) mixed complexes with β-diketones and o-phenanthroline-N-oxide as promising light-conversion molecular devices[J]. Chem. Commun., 1996,10:1199-1200.

    14. [14]

      Bellusci A, Barberio G, Crispini A, Ghedini M, Deda M L, Pucci D. Synthesis and luminescent properties of novel lanthanide (Ⅲ) β-diketone complexes with nitrogen p,p'-disubstituted aromatic ligands[J]. Inorg. Chem., 2005,44:1818-1825. doi: 10.1021/ic048951r

    15. [15]

      Chen X Y, Yang X P, Holliday B J. Metal-controlled assembly of near-infrared-emitting pentanuclear lanthanide β-diketone clusters[J]. J. Inorg. Chem., 2010,49(6):2583-2585. doi: 10.1021/ic902513z

    16. [16]

      QIU Y N, SUN L N, LIU T, LIU Z, SHI L Y, YAN W. Recent advances in near-infrared luminescent lanthanide complexes and hybrid materials[J]. Journal of the Chinese Society of Rare Earths, 2012,30(2):129-145.  

    17. [17]

      ZHONG G L, YANG K Z, FENG Y, ZHU G Y. Research on the Langmuir-Blodgett films of rare earth-β-diketone complexes and triplet energy transfer[J]. Chem. J. Chinese Universities, 1997,18(7):1194-1196. doi: 10.3321/j.issn:0251-0790.1997.07.042

    18. [18]

      King D T, Worrall L J, Gruninger R, Strynadka N C J. New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition[J]. J. Am. Chem. Soc., 2012,134(28):11362-11365. doi: 10.1021/ja303579d

    19. [19]

      CHENG N N. Synthesis, characterization and biological activity of ternary rare earth complexes with β-diketone and heterocycle. Shanghai: Shanghai Normal University, 2012.

    20. [20]

      HUANG L, HUANG C H. Study on photoluminescence and electroluminescence of the rare earth complexes[J]. Acta Chim. Sinica, 2000,58(12):1493-1498. doi: 10.3321/j.issn:0567-7351.2000.12.002

    21. [21]

      Zhao J Y, Ren N, Zhang J J. Supramolecular of lanthanide-2,6-di-methylbenzoic acid-2,2': 6',2''-terpyridine materials: Crystal structures, luminescent property, and thermochemical behaviour[J]. Polyhedron, 2021,194114892. doi: 10.1016/j.poly.2020.114892

    22. [22]

      Wang D J, Liu H, Fan L, Yin G D, Hu Y J, Zheng J. Synthesis and photoluminescent behavior of Eu(Ⅲ) complexes with 4,4,4-trifluoro-1-(6-methoxy-naphthalen-2-yl)-butane-1,3-dione[J]. Synth. Met., 2015,209:267-272. doi: 10.1016/j.synthmet.2015.08.002

    23. [23]

      Chu Y, Hao H X, Xie H D, Chen C L, Cai P Q, Seo H J. Preparation of lanthanide (Eu3+, Tb3+)-complex-grafted copolymer of methyl methacrylate and maleic anhydride films and the promising application as LED luminous layers[J]. J. Mater. Sci.-Mater. Electron., 2016,28:5615-5622.

    24. [24]

      JING J H, LIU B, MENG Y S, ZHANG Y Q, LU H Q, LIU S S. Crystal structure, magnetic properties and theoretical investigation of a dysprosium (The original text is dysprsoium) complex based on 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one[J]. Chinese J. Inorg. Chem., 2021,37(4):623-628.  

    25. [25]

      Liu B, Jin H, Kuang Z A, Chen X, Meng Y S, Lin S J, Liu S S. Bifunctional sulfur-ligated erbium complex: Crystal structure, magnetic and luminescent properties[J]. Inorg. Chim. Acta, 2020,501119297. doi: 10.1016/j.ica.2019.119297

    26. [26]

      Sheldrick G M. SHELXTL-Integrated space-group and crystal structure determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.

    27. [27]

      Sheldrick G M. SHELXL-2018. University of Göttingen, Germany, 2018.

    28. [28]

      Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D. Shape maps and polyhedral interconversion paths in transition metal chemistry[J]. Coord. Chem. Rev., 2005,249:1693-1708. doi: 10.1016/j.ccr.2005.03.031

    29. [29]

      Shen C Q, Yan T L, Wang Y T, Ye Z J, Xu C J, Zhou W J. Synthesis, structure and luminescence properties of binary and ternary complexes of lanthanide (Eu3+, Sm3+ and Tb3+) with salicylic acid and 1,10-phenanthroline[J]. J. Lumin., 2017,184:48-54. doi: 10.1016/j.jlumin.2016.12.018

    30. [30]

      Liu S S, Liu B, Ding M M, Meng Y S, Jing J H, Zhang Y Q, Wang X C, Lin S J. Substituent effects of auxiliary ligand in mononuclear dibenzoylmethane Dy/Er complexes: Single-molecule magnetic behavior and luminescence properties[J]. CrystEngComm, 2020,22(45):7929-7934. doi: 10.1039/D0CE01147A

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    17. [17]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(10)
  • Abstract views(704)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return