Citation: Zhong-Xue LONG, Wei LI, Dong-Fang LI, Jia-Hui JING, Shan-Shan LIU. Synthesis, crystal structure, luminescence, and density functional theory calculation of rare earth complexes based on 1-phenyl-3-methyl-4-benzoyl-5-pyrazolinone[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 385-394. doi: 10.11862/CJIC.2023.009 shu

Synthesis, crystal structure, luminescence, and density functional theory calculation of rare earth complexes based on 1-phenyl-3-methyl-4-benzoyl-5-pyrazolinone

Figures(7)

  • A series of mononuclear rare earth complexes [Ln(pmbp)3(dmbipy)]·C2H5OH, where Ln=Tb (1-Tb), Ho (1-Ho), Er (1-Er) and Tm (1-Tm), were synthesized by using 1-phenyl-3-methyl-4-benzoyl-5-pyrazolinone (Hpmbp) and 4,4'-dimethyl-2,2'-bipyridine (dmbipy) as ligands. Structure characterizations show that the complex is composed of one Ln3+ ion, three pmbp-ions, one dmbipy molecule, and one free ethanol molecule, yielding the [LnO6N2] type structure. The continuous shape measurement (CShM) analyses show that the Ln3+ centers exhibit a distorted triangular dodecahedral geometry. Luminescence measurements showed that all of the complexes exhibit characteristic emission peaks of the corresponding rare earth ions. And it was found that the ligand could sensitize Ho3+ and Er3+ well, while the sensitization of Tb3+ and Tm3+ was weak. In addition, the HOMO and LUMO of Hpmbp ligands, dmbipy ligands, and rare earth complexes were calculated and analyzed by the density functional theory method. It is found that for Tb, Ho, and Tm complexes with an odd number of electrons in the center metal atom, the bond lengths between metal ions and coordination atoms are shorter with the increasing number of electrons in metal ions, while the bond lengths of Er—O and Er—N of 1-Er are between those of 1-Ho and 1-Tm. For 1-Tb, 1-Ho, and 1-Tm, the orbital energy of HOMO and LUMO decreases with increasing electron number, which is consistent with the rule of bond length. For 1-Tb, 1-Ho and 1-Er, the HOMO-LUMO gap increases with the increase of electron number. In addition, the HOMO-LUMO energy gaps of the four complexes are lower than that of the ligands.
  • 加载中
    1. [1]

      Shang K X, He W T, Sun J, Hu D C. Synthesis, crystal structure and near-infrared luminescence of rare earth metal (Y, Er, Ho) complexes containing semirigid tricarboxylic acid ligand[J]. J. Mol. Struct., 2021,1246131097. doi: 10.1016/j.molstruc.2021.131097

    2. [2]

      Kovacs T A, Felinto M C F C, Paolini T B, Ali B, Nakamura L K O, Teotonio E E S, Brito H F, Malta O L. Synthesis and photoluminescence properties of [Eu(dbm)3·PX] and[Eu(acac)3·PX] complexes[J]. J. Lumin., 2018,193:98-105. doi: 10.1016/j.jlumin.2017.09.029

    3. [3]

      Ilmi R, Iftikhar K. Photophysical properties of lanthanide (Ⅲ) 1,1,1-trifluoro-2,4-pentanedione complexes with 2,2'-bipyridyl: An experimental and theoretical investigation[J]. J. Photochem. Photobiol. A-Chem., 2017,333:142-155. doi: 10.1016/j.jphotochem.2016.10.014

    4. [4]

      Zahariev T, Shandurkov D, Gutzov S, Trendafilova N, Enseling D, Justel T, Georgieva I. Phenanthroline chromophore as efficient antenna for Tb3+ green luminescence: A theoretical study[J]. Dyes Pigment., 2021,185108890. doi: 10.1016/j.dyepig.2020.108890

    5. [5]

      Cai L L, Hu Y T, Li Y, Wang K, Zhang X Q, Muller G, Li X M. Solid-state luminescence properties, Hirshfeld surface analysis and DFT calculations of mononuclear lanthanide complexes (Ln=Eu, Gd, Tb, Dy) containing 4'-phenyl-2,2': 6',2''-terpyridine[J]. Inorg. Chim. Acta, 2019,489:85-92. doi: 10.1016/j.ica.2019.02.001

    6. [6]

      Luo Y M, Li J, Xiao L X, Tang R R, Tang X C. Synthesis, characterization and fluorescence properties of Eu(Ⅲ) and Tb(Ⅲ) complexes with novel mono-substituted β-diketone ligands and 1,10-phenanthroline[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2009,72(4):703-708. doi: 10.1016/j.saa.2008.10.059

    7. [7]

      Yan B, Zhou B. Photophysical properties of dysprosium complexes with aromatic carboxylic acids by molecular spectroscopy[J]. J. Photochem. Photobiol. A-Chem., 2005,171(2):181-186. doi: 10.1016/j.jphotochem.2004.10.012

    8. [8]

      Wang Q M, Yan B, Zhang X H. Photophysical properties of novel lanthanide complexes with long chain mono-eicosyl cis-butene dicarboxylate[J]. J. Photochem. Photobiol. A-Chem., 2005,174(2):119-124. doi: 10.1016/j.jphotochem.2005.02.016

    9. [9]

      Jia J H, Li Q W, Chen Y C, Liu J L, Tong M L. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies[J]. Coord. Chem. Rev., 2019,378:365-381. doi: 10.1016/j.ccr.2017.11.012

    10. [10]

      De Silva C R, Li F Y, Huang C H, Zheng Z P. Europium β-diketonates for red-emitting electroluminescent devices[J]. Thin Solid Films, 2008,517(2):957-962. doi: 10.1016/j.tsf.2008.08.118

    11. [11]

      Yan B, Zhou B. Two photoactive lanthanide (Eu3+, Tb3+) hybrid materials of modified β-diketone bridge directly covalently bonded mesoporous host (MCM-41)[J]. J. Photochem. Photobiol. A-Chem., 2008,195:314-322. doi: 10.1016/j.jphotochem.2007.10.019

    12. [12]

      Albrecht M, Schmid S, Dehn S, Wickleder C, Zhang S, Bassett A P, Pikramenou Z, Frohilch C. Diastereoselective formation of luminescent dinuclear lanthanide (Ⅲ) helicates with enantiomerically pure tartaric acid derived bis (β-diketonate) ligands[J]. New J. Chem., 2007,31(10):1755-1762. doi: 10.1039/b705090a

    13. [13]

      Mello Donega C, Junior S A, Sa G F. Europium (Ⅲ) mixed complexes with β-diketones and o-phenanthroline-N-oxide as promising light-conversion molecular devices[J]. Chem. Commun., 1996,10:1199-1200.

    14. [14]

      Bellusci A, Barberio G, Crispini A, Ghedini M, Deda M L, Pucci D. Synthesis and luminescent properties of novel lanthanide (Ⅲ) β-diketone complexes with nitrogen p,p'-disubstituted aromatic ligands[J]. Inorg. Chem., 2005,44:1818-1825. doi: 10.1021/ic048951r

    15. [15]

      Chen X Y, Yang X P, Holliday B J. Metal-controlled assembly of near-infrared-emitting pentanuclear lanthanide β-diketone clusters[J]. J. Inorg. Chem., 2010,49(6):2583-2585. doi: 10.1021/ic902513z

    16. [16]

      QIU Y N, SUN L N, LIU T, LIU Z, SHI L Y, YAN W. Recent advances in near-infrared luminescent lanthanide complexes and hybrid materials[J]. Journal of the Chinese Society of Rare Earths, 2012,30(2):129-145.  

    17. [17]

      ZHONG G L, YANG K Z, FENG Y, ZHU G Y. Research on the Langmuir-Blodgett films of rare earth-β-diketone complexes and triplet energy transfer[J]. Chem. J. Chinese Universities, 1997,18(7):1194-1196. doi: 10.3321/j.issn:0251-0790.1997.07.042

    18. [18]

      King D T, Worrall L J, Gruninger R, Strynadka N C J. New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition[J]. J. Am. Chem. Soc., 2012,134(28):11362-11365. doi: 10.1021/ja303579d

    19. [19]

      CHENG N N. Synthesis, characterization and biological activity of ternary rare earth complexes with β-diketone and heterocycle. Shanghai: Shanghai Normal University, 2012.

    20. [20]

      HUANG L, HUANG C H. Study on photoluminescence and electroluminescence of the rare earth complexes[J]. Acta Chim. Sinica, 2000,58(12):1493-1498. doi: 10.3321/j.issn:0567-7351.2000.12.002

    21. [21]

      Zhao J Y, Ren N, Zhang J J. Supramolecular of lanthanide-2,6-di-methylbenzoic acid-2,2': 6',2''-terpyridine materials: Crystal structures, luminescent property, and thermochemical behaviour[J]. Polyhedron, 2021,194114892. doi: 10.1016/j.poly.2020.114892

    22. [22]

      Wang D J, Liu H, Fan L, Yin G D, Hu Y J, Zheng J. Synthesis and photoluminescent behavior of Eu(Ⅲ) complexes with 4,4,4-trifluoro-1-(6-methoxy-naphthalen-2-yl)-butane-1,3-dione[J]. Synth. Met., 2015,209:267-272. doi: 10.1016/j.synthmet.2015.08.002

    23. [23]

      Chu Y, Hao H X, Xie H D, Chen C L, Cai P Q, Seo H J. Preparation of lanthanide (Eu3+, Tb3+)-complex-grafted copolymer of methyl methacrylate and maleic anhydride films and the promising application as LED luminous layers[J]. J. Mater. Sci.-Mater. Electron., 2016,28:5615-5622.

    24. [24]

      JING J H, LIU B, MENG Y S, ZHANG Y Q, LU H Q, LIU S S. Crystal structure, magnetic properties and theoretical investigation of a dysprosium (The original text is dysprsoium) complex based on 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one[J]. Chinese J. Inorg. Chem., 2021,37(4):623-628.  

    25. [25]

      Liu B, Jin H, Kuang Z A, Chen X, Meng Y S, Lin S J, Liu S S. Bifunctional sulfur-ligated erbium complex: Crystal structure, magnetic and luminescent properties[J]. Inorg. Chim. Acta, 2020,501119297. doi: 10.1016/j.ica.2019.119297

    26. [26]

      Sheldrick G M. SHELXTL-Integrated space-group and crystal structure determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.

    27. [27]

      Sheldrick G M. SHELXL-2018. University of Göttingen, Germany, 2018.

    28. [28]

      Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D. Shape maps and polyhedral interconversion paths in transition metal chemistry[J]. Coord. Chem. Rev., 2005,249:1693-1708. doi: 10.1016/j.ccr.2005.03.031

    29. [29]

      Shen C Q, Yan T L, Wang Y T, Ye Z J, Xu C J, Zhou W J. Synthesis, structure and luminescence properties of binary and ternary complexes of lanthanide (Eu3+, Sm3+ and Tb3+) with salicylic acid and 1,10-phenanthroline[J]. J. Lumin., 2017,184:48-54. doi: 10.1016/j.jlumin.2016.12.018

    30. [30]

      Liu S S, Liu B, Ding M M, Meng Y S, Jing J H, Zhang Y Q, Wang X C, Lin S J. Substituent effects of auxiliary ligand in mononuclear dibenzoylmethane Dy/Er complexes: Single-molecule magnetic behavior and luminescence properties[J]. CrystEngComm, 2020,22(45):7929-7934. doi: 10.1039/D0CE01147A

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    7. [7]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    10. [10]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    13. [13]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    14. [14]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    15. [15]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    16. [16]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

Metrics
  • PDF Downloads(12)
  • Abstract views(1449)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return