Citation: Chuan-Wang ZENG, Xiao-Xiao LI, Jin-Ming ZENG, Cao LIU, Jia-Jun LAI, Xiao-Peng QI. Synergistic enhancement of catalytic water electrolysis performance of iron-cobalt-based materials by oxygen vacancies and phosphorus doping[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 202-210. doi: 10.11862/CJIC.2023.006 shu

Synergistic enhancement of catalytic water electrolysis performance of iron-cobalt-based materials by oxygen vacancies and phosphorus doping

  • Corresponding author: Xiao-Peng QI, qxpai@163.com
  • Received Date: 21 June 2022
    Revised Date: 5 December 2022

Figures(7)

  • Oxygen vacancies and hetero atom filling play an important role in the catalytic performance of materials. To develop an efficient and stable water electrolysis catalyst, based on the oxygen vacancies and phosphorus doping, nanoflower structures with oxygen vacancy and phosphorus doping were synthesized on iron foam by in-situ immersion growth and two-step heat treatment as hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts. CoFe2O4 has been reported as a promising electrocatalyst for OER and oxygen reduction reaction (ORR). However, CoFe2O4 exhibits poor conductivity and slow electrocatalytic reaction in HER. The formation of oxygen vacancy (Ov) in CoFe2O4 can effectively regulate the electronic structure of the catalyst surface and contribute to the formation of more defects and vacancies, thus improving the activity of OER. Then, we added phosphorus atoms to fill the vacancy, and the prepared P-Ov-CoFe2O4/IF showed excellent performance of HER and OER in the alkaline electrocatalytic test. At the current density of 10 mA·cm-2, the overpotentials of HER and OER were only 54 and 191 mV, and the Tafel slopes were 57 and 54 mV·dec-1, respectively. The prepared electrocatalyst also dem-onstrated excellent cycling stability.
  • 加载中
    1. [1]

      YUAN H F, MA Z Z, WANG S M, LI J P, WANG X G. Engineering oxygen vacancy-rich Co3O4 nanowire as high- efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020,71(12):5831-5841.  

    2. [2]

      Xu Q C, Jiang H, Zhang H X, Jiang H B, Li C Z. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction[J]. Electrochim. Acta, 2018,259962967.

    3. [3]

      FENG J W, ZHOU Q. Effect of different Co contents on structure of nanoporous Ni - Co and catalytic performance of hydrogen evolution[J]. Chinese J. Inorg. Chem., 2019,35(10):1746-1754. doi: 10.11862/CJIC.2019.215 

    4. [4]

      Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. CrystEngComm, 2019,120(2):851-918.

    5. [5]

      Jiang S H, Zhang R Y, Liu H X, Rao Y, Yu Y N, Chen S, Yue Q, Zhang Y N, Kang Y J. Promoting formation of oxygen vacancies in twodimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2020,142(14):6461-6466. doi: 10.1021/jacs.9b13915

    6. [6]

      LI C, TIAN P, PANG H C, YE J W, NING G L. Tungsten doped ironnickel layered hydroxide for oxygen evolution and hydrogen evolution reaction[J]. Chinese J. Inorg. Chem., 2020,36(8)14921498.  

    7. [7]

      Huang Y R, Yang W W, Yu Y S, Hao S. Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction[J]. J. Electroanal. Chem., 2019,840:409-414. doi: 10.1016/j.jelechem.2019.04.010

    8. [8]

      Yan Y T, Wang P C, Lin J H, Cao J, Qi J L. Modification strategies on transition metal-based electrocatalysts for efficient water splitting[J]. J. Energy Chem., 2021,58:446-462. doi: 10.1016/j.jechem.2020.10.010

    9. [9]

      Zhang S F, Wei N, Yao Z J, Zhao X Y, Du M, Zhou Q S. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46(7):5286-5295. doi: 10.1016/j.ijhydene.2020.11.072

    10. [10]

      Zhang L H, Wei T, Jiang Z M, Liu C Q, Jiang H, Chang J, Sheng L Z, Zhou Q H, Yuan L B, Fan Z J. Electrostatic interaction in electrospun nanofibers: Double - layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage[J]. Nano Energy, 2018,48:238-247. doi: 10.1016/j.nanoen.2018.03.053

    11. [11]

      Liu T T, Ma X, Liu D N, Hao S, Du G, Ma Y J, Asiri A M, Sun X P, Chen L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values[J]. ACS Catal., 2017,7(1):98-102. doi: 10.1021/acscatal.6b02849

    12. [12]

      Nemiwal M, Gosu V, Zhang T C, Kumar D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting[J]. Int. J. Hydrog. Energy, 2021,46(17):10216-10238. doi: 10.1016/j.ijhydene.2020.12.146

    13. [13]

      Zhang T W, Li Z F, Wang L K, Zhang Z X, Wang S W. Spinel CoFe2O4 supported by three dimensional graphene as high - performance bi-functional electrocatalysts for oxygen reduction and evolution reaction[J]. Int. J. Hydrog. Energy, 2019,44(3):1610-1619. doi: 10.1016/j.ijhydene.2018.11.120

    14. [14]

      Wang Z Y, Chen J Y, Song E H, Wang N, Dong J C, Zhang X, Ajayan P M, Yao W, Wang C F, Liu J J, Shen J F, Ye M X. Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution[J]. Nat. Commun., 2021,12(1)5960. doi: 10.1038/s41467-021-26256-1

    15. [15]

      Li Z H, Lv Z H, Liu X, Wang G X, Lin Y S, Xie G W, Jiang L H. Magnetic-field guided synthesis of highly active Ni-S-CoFe2O4 electrocatalysts for oxygen evolution reaction[J]. Renew. Energy, 2021,165:612-618. doi: 10.1016/j.renene.2020.11.083

    16. [16]

      Bi J L, Zhai X J, Liu G S, Chi J Q, Wang X Y, Chen S J, Xiao Z Y, Wang L. Low loading of P modified Rh nanoparticles encapsulated in N, P-doped carbon for boosted and pH-universal hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2022,47(6):3791-3800. doi: 10.1016/j.ijhydene.2021.11.036

    17. [17]

      Guo J Q, Zhan Z X, Lei T, Yin P. Facile synthesis of self-supported intertwined columnar NiCoP as a high efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2022,47(9)59745989.

    18. [18]

      Li J G, Sun H C, Lv L, Li Z S, Ao X, Xu C H, Li Y, Wang C D. Metalorganic framework - derived hierarchical (Co, Ni)Se2@NiFe LDH hollow nanocages for enhanced oxygen evolution[J]. ACS Appl. Mater. Interfaces, 2019,11(8):8106-8114. doi: 10.1021/acsami.8b22133

    19. [19]

      Wang F M, Chen J W, Qi X P, Yang H, Jiang H H, Deng Y Q, Liang T X. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Appl. Surf. Sci., 2019,481:1403-1411. doi: 10.1016/j.apsusc.2019.03.200

    20. [20]

      Wang H Q, Zhang X W, Wang J G, Liu H L, Hu S X, Zhou W J, Liu H, Wang X. Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting[J]. Sci. China-Mater., 2020,63(6):1054-1064. doi: 10.1007/s40843-019-1268-7

    21. [21]

      Zhuang L H, Ge L, Yang Y S, Li M R, Jia Y, Yao X D, Zhu Z H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Adv. Mater., 2017,29(17)1606793. doi: 10.1002/adma.201606793

    22. [22]

      Yan K L, Shang X, Liu Z Z, Dong B, Lu S S, Chi J Q, Gao W K, Chai Y M, Liu C G. A facile method for reduced CoFe2O4 nanosheets with rich oxygen vacancies for efficient oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2017,42(38):24150-24158. doi: 10.1016/j.ijhydene.2017.07.165

    23. [23]

      Xiao Z H, Wang Y, Huang Y C, Wei Z X, Dong C L, Ma J M, Shen S H, Li Y F, Wang S Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environ. Sci., 2017,10(12):2563-2569. doi: 10.1039/C7EE01917C

    24. [24]

      Murthy A P, Theerthagiri J, Madhavan J, Murugan K. Highly active MoS2/carbon electrocatalysts for the hydrogen evolution reaction— Insight into the effect of the internal resistance and roughness factor on the Tafel slope[J]. Phys. Chem. Chem. Phys., 2017,19(3):1988-1998. doi: 10.1039/C6CP07416B

    25. [25]

      Huang L B, Zhao L, Zhang Y, Chen Y Y, Zhang Q H, Luo H, Zhang X, Tang T, Gu L, Hu J S. Self-limited on-site conversion of MoO3 Nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution[J]. Adv. Energy Mater., 2018,8(21)1800734. doi: 10.1002/aenm.201800734

    26. [26]

      Liang H F, Gandi A N, Anjum D H, Wang X B, Schwingenschlögl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting[J]. Nano Lett., 2016,16(12):7718-7725. doi: 10.1021/acs.nanolett.6b03803

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    15. [15]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(18)
  • Abstract views(1008)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return