Citation: Yu-Kang MA, Jiao CHEN, Yi LI, Yu-Ting YANG, Hao-Yi ZHANG, Chun-Shan LU, Guang-Jun WU, Qiang XIAO. Gel-less steam-assisted crystallization of platelike MFI crystals for the fabrication of b-oriented zeolite membranes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 245-254. doi: 10.11862/CJIC.2023.005 shu

Gel-less steam-assisted crystallization of platelike MFI crystals for the fabrication of b-oriented zeolite membranes

  • Corresponding author: Qiang XIAO, xiaoq@zjnu.cn
  • Received Date: 13 July 2022
    Revised Date: 29 November 2022

Figures(11)

  • Novel platelike MFI zeolite crystals were used as seeds to fabricate dense and flat MFI zeolite membranes with b-axis orientation on porous sintered quartz wool discs through a gel-free steam-assisted crystallization (GLSAC) method. Firstly, the platelike MFI crystals were coated on the porous support by a filtration method. Then the seeded support was dipped in a tetrapropylammonium hydroxide (TPAOH) aqueous solution followed by a drying step. Subsequently, the dried discs were heated in an autoclave with a small amount of water at the bottom to grow into continuous membranes. Influences of the TPAOH concentration, water at the autoclave bottom, temperature, and time on the MFI zeolite membranes were investigated. The results of the scanning electron microscope and X-ray diffraction show that the out-plane growth of the platelike MFI seeds was suppressed at an optimized TPAOH concentration and water content. A dense and flat MFI zeolite membrane with a thickness of about 750 nm was successfully prepared. Binary butane isomers separation tests revealed that a separation factor (SFA/B) of 36 at a permeation rate of 1.5×10-7 mol·m-2·s-1·Pa-1 for n-butane was achieved.
  • 加载中
    1. [1]

      Varoon K, Zhang X, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal I A, Sung C Y, Cococcioni M, Francis L F, Mccormick A V, Mkhoyan K A, Tsapatsis M. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011,334(6052):72-75. doi: 10.1126/science.1208891

    2. [2]

      Agrawal K V, Topuz B, Pham T C T, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers[J]. Adv. Mater., 2015,27(21):3243-3249. doi: 10.1002/adma.201405893

    3. [3]

      Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W, Cho H J, Fetisov E O, Thyagarajan R, Dejaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017,543(7647):690-694. doi: 10.1038/nature21421

    4. [4]

      Cao Z S, Zeng S X, Xu Z, Arvanitis A, Yang S W, Gu X H, Dong J H. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Sci. Adv., 2018,4eaau8634. doi: 10.1126/sciadv.aau8634

    5. [5]

      Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Sci. Adv., 2020,6eaay5993. doi: 10.1126/sciadv.aay5993

    6. [6]

      Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N, Topuz B, Onorato F J, Macosko C W, Mkhoyan K A, Tsapatsis M. Open-pore two-dimen-sional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports[J]. Angew. Chem. Int. Ed., 2016,55(25):7184-7187. doi: 10.1002/anie.201601135

    7. [7]

      WU Y Q, ZHENG L K, CHEN Q, YU M T, WANG J G, ZHANG F M, XIAO Q, ZHU W D. Fabrication of zeolite membrane using two-dimensional open-pore MFI nanosheets as building blocks[J]. Chinese J. Inorg. Chem., 2019,35(1):89-94.  

    8. [8]

      Dai W J, Kouvatas C, Tai W S, Wu G, Guan N J, Li L D, Valtchev V. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. J. Am. Chem. Soc., 2021,143(4):1993-2004. doi: 10.1021/jacs.0c11784

    9. [9]

      Wang Z, Zhang H Y, Ma Y K, Diao D D, Lu C S, Xiao Q, Wu G J, Li L D. Transfer printing platelike MFI crystals as seeds for the preparation of silicalite-1 membranes[J]. Microporous Mesoporous Mater., 2022,336111895. doi: 10.1016/j.micromeso.2022.111895

    10. [10]

      Lu X F, Yang Y W, Zhang J J, Yan Y S, Wang Z B. Solvent-free secondary growth of highly b-oriented MFI zeolite films from anhydrous synthetic powder[J]. J. Am. Chem. Soc., 2019,141(7):2916-2919. doi: 10.1021/jacs.9b00018

    11. [11]

      Han S C, Liu P, Ma Y, Wu Q M, Meng X J, Xiao F S. Calcinationfree fabrication of highly b-oriented silicalite-1 zeolite films by secondary growth in the absence of organic structure-directing agents[J]. Ind. Eng. Chem. Res., 2021,60(19):7167-7173. doi: 10.1021/acs.iecr.1c01102

    12. [12]

      Pham T C T, Nguyen T H, Yoon K B. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation[J]. Angew. Chem. Int. Ed., 2013,52(33):8693-8698. doi: 10.1002/anie.201301766

    13. [13]

      Banihashemi F, Lin J Y S. b-Oriented MFI zeolite membranes for xylene isomer separation-effect of xylene activity on separation performance[J]. J. Membr. Sci., 2022,652120492. doi: 10.1016/j.memsci.2022.120492

    14. [14]

      Kim D, Ghosh S, Akter N, Kraetz A, Duan X, Gwak G, Rangnekar N, Johnson J R, Narasimharao K, Malik M A, Al-Thabaiti S, Mccool B, Boscoboinik J A, Mkhoyan K A, Tsapatsis M. Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication[J]. Sci. Adv., 2022,8eabm8162. doi: 10.1126/sciadv.abm8162

    15. [15]

      Hrabanek P, Zikanova A, Drahokoupil J, Prokopova O, Brabec L, Jirka I, Matejkova M, Fila V, Iglesia O D L, Kocirik M. Combined silica sources to prepare preferentially oriented silicalite-1 layers on various supports[J]. Microporous Mesoporous Mater., 2013,174:154-162. doi: 10.1016/j.micromeso.2013.03.007

    16. [16]

      Nian P, Su M H, Yu T, Wang Z, Zhang B X, Shao X L, Jin X Y, Jiang N Z, Li S, Ma Q. Fabrication of a highly b-oriented MFI-type zeolite film-modified electrode with molecular sieving properties by langmuir-blodgett method[J]. J. Mater. Sci., 2016,51(6):3257-3270. doi: 10.1007/s10853-015-9638-0

    17. [17]

      Li X M, Peng Y, Wang Z B, Yan Y S. Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth[J]. CrystEngComm, 2011,13(11):3657-3660. doi: 10.1039/c1ce05094j

    18. [18]

      Liu Y, Li M R, Chen Z G, Cui Y, Lu J M. Hierarchy control of MFI zeolite membrane towards superior butane isomer separation performance[J]. Angew. Chem. Int. Ed., 2021,60(14):7659-7663. doi: 10.1002/anie.202017087

    19. [19]

      Sun K, Liu B, Zhong S L, Wu A M, Wang B, Zhou R F, Kita H. Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation[J]. Sep. Purif. Technol., 2019,219:90-99. doi: 10.1016/j.seppur.2019.03.018

    20. [20]

      Stoeger J A, Choi J, Tsapatsis M. Rapid thermal processing and separation performance of columnar MFI membranes on porous stainless steel tubes[J]. Energy Environ. Sci., 2011,4(9):3479-3486. doi: 10.1039/c1ee01700d

    21. [21]

      Qiu H, Xu N, Kong L, Zhang Y, Kong X, Wang M Q, Tang X X, Meng D N, Zhang Y F. Fast synthesis of thin silicalite-1 zeolite membranes at low temperature[J]. J. Membr. Sci., 2020,611118361. doi: 10.1016/j.memsci.2020.118361

    22. [22]

      Kim E, Choi J, Tsapatsis M. On defects in highly a-oriented MFI membranes[J]. Microporous Mesoporous Mater., 2013,170:1-8. doi: 10.1016/j.micromeso.2012.11.023

    23. [23]

      Jareman F, Hedlund J, Sterte J. Effects of aluminum content on the separation properties of MFI membranes[J]. Sep. Purif. Technol., 2003,32:159-163. doi: 10.1016/S1383-5866(03)00029-7

    24. [24]

      Choi J, Jeong H K, Snyder M A, Stoeger J A, Masel R I, Tsapatsis M. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing[J]. Science, 2009,325(5940):590-593. doi: 10.1126/science.1176095

    25. [25]

      Wu A M, Tang C Y, Zhong S L, Wang B, Zhou J J, Zhou R F. Synthesis optimization of (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. Sep. Purif. Technol., 2019,214:51-60. doi: 10.1016/j.seppur.2018.02.023

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(4)
  • Abstract views(608)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return