Citation: Qiao-Li ZHANG, Ya-Ping WANG, Wan-Jie SUN, Qing-Feng YI. Preparation and oxygen reduction electroactivity of metal nanoparticles loaded on sheet-like carbon composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 346-356. doi: 10.11862/CJIC.2023.003 shu

Preparation and oxygen reduction electroactivity of metal nanoparticles loaded on sheet-like carbon composites

  • Corresponding author: Qing-Feng YI, yqfyy2001@hnust.edu.cn
  • Received Date: 4 September 2022
    Revised Date: 7 December 2022

Figures(7)

  • Herein, Co/C-N, Fe/C-N, and Fe-Co/C-N nanocomposites were obtained by the self-template method, and high-temperature pyrolysis of the mixture composed of dicyandiamide, sucrose, and cobalt (ferric) phthalocyanine as nitrogen, carbon, and metal sources respectively. Then a small amount of platinum was deposited on the Co/C-N with better oxygen reduction reaction (ORR) electroactivity by thermal reduction to obtain carbon nanosheet -supported Co-Pt nanoparticles (Co-Pt/C-N). The catalysts were well characterized and tested for ORR. The Co/C-N catalyst displayed the onset potential (Eonset) and half-wave potential (E1/2) of ORR closed to the Pt/C in an alkaline solution, and it even presented the more positive onset potential and half-wave potential in a neutral solution. For Co-Pt/C-N, its ORR electroactivity in an acidic solution was greatly enhanced compared with the Co/C-N and was comparable to the Pt/C. The excellent ORR electroactivity of the samples is mainly attributed to the 3D structure formed by the carbon nanosheets, uniform distribution of the metal nanoparticles, and abundant pyridine N.
  • 加载中
    1. [1]

      Wang Z, Cheng L Z, Zhang R, Lv W X, Wang W. Surface-oxidized Fe-Co-Ni alloys anchored to N-doped carbon nanotubes as efficient cata-lysts for oxygen reduction reaction[J]. J. Alloy. Compd., 2021,857158249. doi: 10.1016/j.jallcom.2020.158249

    2. [2]

      Li Y J, Chang C C, Wen T C. A mixture design approach to thermally prepared Ir-Pt-Au ternary electrodes for oxygen reduction in alkaline solution[J]. J. Appl. Electrochem., 2013,27:227-234.

    3. [3]

      CHEN A L, SHENG K, WANG Y B, ZHANG Q L, TAN G H, YI Q F. Fabrication and oxygen reduction reaction electroactivity of Pt-Fe-Co loaded on nitrogen-doped carbon nanosheet composites[J]. Acta Materiae Compositae Sinica, 2022,39(3):1106-1115. doi: 10.13801/j.cnki.fhclxb.20210506.001

    4. [4]

      Chen D, Li G F, Chen X, Zhang Q, Sui J, Li C J, Zhang Y C, Hu J, Yu J H, Yu L Y, Dong L F. Developing nitrogen and Co/Fe/Ni multi-doped carbon nanotubes as high-performance bifunctional catalyst for rechargeable zinc-air battery[J]. J. Colloid Interface Sci., 2021,593:204-213. doi: 10.1016/j.jcis.2021.02.115

    5. [5]

      Gao Z, Zhang P P, Jiang R, Wang H L, Zhi Q, Yu B Q, Jin Y C, Sun T T, Jiang J Z. Co-Fe alloy nanoparticles and Fe3C nanocrystals on N-doped biomass-derived porous carbon for superior electrocatalytic oxygen reduction[J]. J. Solid State Chem., 2022,307122735. doi: 10.1016/j.jssc.2021.122735

    6. [6]

      Wang Y B, Yi R W, Chen A L, Fang C, Wang Y P, Yi Q F, Liu M Y, Liu S J, Zhan S Q, Zhong B. Hollow carbon sphere and polyhedral car-bon composites supported iron nanoparticles as excellent bifunctional electrocatalysts of Zn-air battery[J]. Energy Technol., 2022,10(5)2200057. doi: 10.1002/ente.202200057

    7. [7]

      Yi Q F, Zhang Y H, Liu X P, Yang Y H. Carbon-supported Fe/Co-N electrocatalysts synthesized through heat treatment of Fe/Co-doped polypyrrole-polyaniline composites for oxygen reduction reaction[J]. Sci. China-Chem., 2013,57(5):739-747.

    8. [8]

      Feng Y, Song K X, Zhang W, Zhou X Y, Yoo S J, Kim J G, Qiao S F, Qi Y G, Zou X, Chen Z J, Qin T T, Yue N L, Wang Z Z, Li D B, Zheng W T. Efficient ORR catalysts for zinc-air battery: Biomass-derived ultra-stable Co nanoparticles wrapped with graphitic layers via opti-mizing electron transfer[J]. J. Energy Chem., 2022,70:211-218. doi: 10.1016/j.jechem.2022.01.047

    9. [9]

      YANG X K, CHEN A L, YI Q F. Easy Preparation of N-doped gra-phene-like nanosheets as excellent metal-free cathodic electrocata-lysts of Zn-air battery[J]. Chinese J. Inorg. Chem., 2021,37(1):157-170.  

    10. [10]

      Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z. Boron-doped carbon nanotubes as metal-free electro-catalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2011,50(31):7132-7135. doi: 10.1002/anie.201101287

    11. [11]

      Ma Z L, Dou S, Shen A L, Tao L, Dai L M, Wang S Y. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2015,54(6):1888-1892. doi: 10.1002/anie.201410258

    12. [12]

      Dar S U, Din M U A, Hameed M U, Ali S, Akram R, Wu Z P, Wu D Z. Oxygen reduction reaction of (C-PCTNB@CNTs): A nitrogen and phosphorus dual-doped carbon electro-catalyst derived from poly-phosphazenes[J]. J. Power Sources, 2018,373:61-69. doi: 10.1016/j.jpowsour.2017.11.006

    13. [13]

      Wu K H, Gentle I R, Wang D W. Revisiting oxygen reduction reac-tion on oxidized and unzipped carbon nanotubes[J]. Carbon, 2015,81:295-304. doi: 10.1016/j.carbon.2014.09.060

    14. [14]

      Chen A L, Yi Q F, Sheng K, Wang Y B, Chen J C, Xiang K W, Nie H D, Zhou X. Nitrogen and phosphorus co-doped ultrathin carbon nanosheets as superior cathode catalysts for Zn-air batteries[J]. Sustain. Energ. Fuels, 2021,5(9):2458-2468. doi: 10.1039/D1SE00275A

    15. [15]

      Yang X K, Yi Q F, Sheng K, Wang T. CoNi loaded C-N tubular nano-composites as excellent cathodic catalysts of alkaline Zn-air batter-ies[J]. Catal. Lett., 2020,150:2886-2899. doi: 10.1007/s10562-020-03198-9

    16. [16]

      Chang C W, Nabar Y, Kuroki S, Hayakawa T, Kakimoto M A, Miyata S. Carbon-based cathode materials doped with a new borazine com-pound for electrochemical oxygen reduction[J]. Chem. Lett., 2012,41(9):923-925. doi: 10.1246/cl.2012.923

    17. [17]

      Yu L, Yi Q F, Yang X K, Chen Y. An easy synthesis of Ni-Co doped hollow CN tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries[J]. Sci. China Mater., 2019,62(9):1251-1264. doi: 10.1007/s40843-019-9439-9

    18. [18]

      Wang N G, Liang J W, Liu J J, Cai Q, Li J S, Chen J P, Huang T, Shi Z C. CoFe nanoparticles dispersed in Co/Fe-N-C support with meso-and macroporous structures as the high-performance catalyst boost-ing the oxygen reduction reaction for Al/Mg-air batteries[J]. J. Power Sources, 2022,517230707. doi: 10.1016/j.jpowsour.2021.230707

    19. [19]

      Fu G T, Cui Z M, Chen Y F, Li Y T, Tang Y W, Goodenough J B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes[J]. Adv. Energy Mater., 2017,7(1)1601172. doi: 10.1002/aenm.201601172

    20. [20]

      Wang L Q, Liang K X, Deng L, Liu Y N. Protein hydrogel networks: A unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions[J]. Appl. Catal. B-Environ., 2019,246:89-99. doi: 10.1016/j.apcatb.2019.01.050

    21. [21]

      Li G R, Zhang H F, Yu X T, Lei Z P, Yin F X, He X B. Highly effi-cient Co/NC catalyst derived from ZIF-67 for hydrogen generation through ammonia decomposition[J]. Int. J. Hydrog. Energy, 2022,47(26):12882-12892. doi: 10.1016/j.ijhydene.2022.02.046

    22. [22]

      Li L, Xi W X, Chen J, Yang J. ZIF-67 derived P/Ni/Co/NC nanoparti-cles as highly efficient electrocatalyst for oxygen reduction reaction (ORR)[J]. J. Solid State Chem., 2018,264:1-5. doi: 10.1016/j.jssc.2018.04.035

    23. [23]

      Bai F, Huang H, Tan Y L, Hou C M, Zhang P. One-step preparation of N-doped graphene/Co nanocomposite as an advanced oxygen reduction electrocatalyst[J]. Electrochim. Acta, 2015,176:280-284. doi: 10.1016/j.electacta.2015.07.010

    24. [24]

      Guo D H, Shibuya R K, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016,351(6271):361-365. doi: 10.1126/science.aad0832

    25. [25]

      Lai L F, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z X, Lin J, Ruoff R S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reac-tion[J]. Energy Environ. Sci., 2012,5(7):7936-7942. doi: 10.1039/c2ee21802j

    26. [26]

      Nie Q, Cai Y X, Xu N N, Peng L W, Qiao J L. Highly Stabilized zinc-air batteries based on nanostructured Co3O4 composites as efficient bifunctional electrocatalyst[J]. ChemElectroChem, 2018,5(14):1976-1984. doi: 10.1002/celc.201800159

    27. [27]

      Yi Q F, Xiang B L, Zhang Y H, Yang Y H, Liu X P. Fe/Co/C-N nano-catalysts for oxygen reduction reaction synthesized by directly pyro-lyzing Fe/Co-doped polyaniline[J]. J. Mater. Sci., 2013,49(2):729-736.

    28. [28]

      Sheng K, Yi Q F, Hou L F, Chen A L. Metal-free graphene modified nitrogen-doped ultra-thin hollow carbon spheres as superior cathodic catalysts of Zn-air battery[J]. J. Electrochem. Soc., 2020,167(7)070560. doi: 10.1149/1945-7111/ab8646

    29. [29]

      Ma Z F, Zhang H J, Yuan X X, Jiang Q Z. Research progress of non-precious metal oxygen reduction catalysts for low-temperature fuel cells[J]. Chem. Eng. J., 2011,30(1):150-154.

    30. [30]

      Sheng K, Yi Q F, Chen A L, Wang Y B, Yan Y H, Nie H D, Zhou X L. CoNi Nanoparticles supported on N-doped bifunctional hollow carbon composites as high-performance ORR/OER Catalysts for rechargeable Zn-air batteries[J]. ACS Appl. Mater. Interfaces, 2021,13:45394-45405. doi: 10.1021/acsami.1c10671

    31. [31]

      Wang Y P, Liu M Y, Zhang Y, Yi Q F, Yi R W. All-solid-state syn-thesis of high-performance electrocatalysts for oxygen reduction reac-tion derived from g-C3N4 and cobalt phthalocyanine[J]. Adv. Mater. Interfaces, 2022,92201330. doi: 10.1002/admi.202201330

    32. [32]

      Lee J H, Jang J H, Kim J, Yoo S J. Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxy-gen reduction reaction electrocatalyst[J]. J. Ind. Eng. Chem., 2021,97:466-475. doi: 10.1016/j.jiec.2021.03.004

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    3. [3]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    4. [4]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    5. [5]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    6. [6]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    7. [7]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    8. [8]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    9. [9]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    10. [10]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    11. [11]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    12. [12]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    13. [13]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    14. [14]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    15. [15]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    16. [16]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    17. [17]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    18. [18]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    19. [19]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    20. [20]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

Metrics
  • PDF Downloads(10)
  • Abstract views(408)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return