Citation: Man-Rong LIU, Er-Lin YUE, Ji-Jiang WANG, Wang-Chuan ZHU, Hang QUAN, Long TANG, Xiao WANG, Xiang-Yang HOU, Yu-Qi ZHANG. Selective detection of 2, 4, 6-trinitrophenol and fluazinam in water based on a 1D Zn(Ⅱ) coordination polymer[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 375-384. doi: 10.11862/CJIC.2023.002 shu

Selective detection of 2, 4, 6-trinitrophenol and fluazinam in water based on a 1D Zn(Ⅱ) coordination polymer

Figures(13)

  • A 1D coordination polymer [Zn2(H2L)2(4, 4′-bpy)2(H2O)]n (1) (H4L=1, 1′∶4′, 1″∶4″, 1‴-quterphenyl-2, 4, 2‴, 4‴-tetracarboxylic acid, 4, 4′-bpy=4, 4′-bipyridine) was synthesized by hydrothermal method, and its structure was characterized by single-crystal X-ray diffraction analysis, elemental analysis, infrared spectroscopy, thermogravimetric analysis, etc. The crystallographic analysis shows that complex 1 belongs to the triclinic crystal system with the space group of P1. Complex 1 consists of two zinc ions with different coordination geometries, which lie in a distorted trigonal bipyramidal {ZnNO4} and octahedral {ZnNO5} geometrical configuration, respectively. The two H2L2-ligands in complex 1 are linked to each other by zinc ions, forming an infinite 1D zigzag planar structure. The fluorescence sensing experiments indicated that the fluorescence of complex 1 could be quenched by 2, 4, 6-trinitrophenol and fluazinam with high sensitivity and selectivity. Moreover, the anti-interference of detection was also quite excellent.
  • 加载中
    1. [1]

      Yinon J. Forensic and environmental detection of explosives. New York: John Wiley & Sons, 1999: 1-286

    2. [2]

      Srivastav A L. Chemical fertilizers and pesticides: Role in groundwater contamination//Prasad M N V. Agrochemicals detection, treatment and remediation. Amsterdam: Elsevier, 2020: 143-159

    3. [3]

      Banerjee D, Hu Z C, Li J. Luminescent metal-organic frameworks as explosive sensors[J]. Dalton Trans., 2014,43(28):10668-10685. doi: 10.1039/C4DT01196A

    4. [4]

      Sun Q, Yang K, Ma W N, Zhang L Y, Yuan G Z. A highly stable 8-hydroxyquinolinate-based metal-organic framework as a selective fluorescence sensor for Fe3+, Cr2O72- and nitroaromatic explosives[J]. Inorg. Chem. Front., 2020,7(22):4387-4395. doi: 10.1039/D0QI01032D

    5. [5]

      He G, Peng H N, Liu T H, Yang M N, Zhang Y, Fang Y. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles[J]. J. Mater. Chem., 2009,19(39):7347-7353. doi: 10.1039/b906946a

    6. [6]

      Nagakar S S, Joarder B, Chaudhari A K, Mukherjee S, Ghosh S K. Highly selective detection of nitro explosives by a luminescent metalorganic framework[J]. Angew. Chem. Int. Ed., 2013,52(10):2881-2885. doi: 10.1002/anie.201208885

    7. [7]

      Sanda S, Parshamoni S, Biswas S, Konar S. Highly selective detection of palladium and picric acid by a luminescent MOF: A dual functional fluorescent sensor[J]. Chem. Commun., 2015,51(30):6576-6579. doi: 10.1039/C4CC10442K

    8. [8]

      Cao L H, Shi F, Zhang W M, Zang S Q, Mak T C W. Selective sensing of Fe3+ and Al3+ ions detection of 2, 4, 6-trinitrophenol by a waterstable terbium-based metal-organic framework[J]. Chem.-Eur. J., 2015,21(44):15705-15712. doi: 10.1002/chem.201501162

    9. [9]

      Wyman, Serve, Hobson, Lee, Uddin"E"D. Acute toxicity, distribution, and metabolism of 2, 4, 6-trinitrophenol (picric acid) in Fischer 344 rats[J]. J. Toxicol. Environ. Health, 1992,37(2):313-327. doi: 10.1080/15287399209531672

    10. [10]

      Halfon E, Galassi S, Bruggemann R, Provini A. Selection of priority properties to assess environmental hazard of pesticides[J]. Chemosphere, 1996,33(8):1543-1562. doi: 10.1016/0045-6535(96)00274-3

    11. [11]

      Hamilton D J, Ambrus A, Dieterle R M, Felsot A S, Harris C A, Holland P T, Katayama A, Kurihara N, Linders J, Unsworth J. Regulatory limits for pesticide residues in water (IUPAC technical report)[J]. Pure Appl. Chem., 2003,75(8):1123-1155. doi: 10.1351/pac200375081123

    12. [12]

      Guo Z J, Miyoshi H, Komyoji T, Haga T, Fujita T. Uncoupling activity of a newly developed fungicide, fluazinam[3-chloro-N-(3-chloro-2, 6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine][J]. BBA Bioenerg., 1991,1056(1):89-92. doi: 10.1016/S0005-2728(05)80077-5

    13. [13]

      Feng X X, Wang K, Mu Z B, Zhao Y Z, Zhang H Y. Fluazinam residue and dissipation in potato tubers and vines, and in field soil[J]. Am. J. Potato Res., 2015,92(5):567-572. doi: 10.1007/s12230-015-9469-1

    14. [14]

      Flie bach A, M der P. Short-and long-term effects on soil microorganisms of two potato pesticide spraying sequences with either glufosinate or dinoseb as defoliants[J]. Biol. Fertil. Soils, 2004,40(4):268-276.

    15. [15]

      Gianfreda L, Rao M A. The influence of pesticides on soil enzymes// Shukla G, Varma A. Soil enzymology: Vol. 22. Berlin, Heidelberg: Springer, 2010: 293-312

    16. [16]

      van Ginkel C J W, Sabapathy N N. Allergic contact dermatitis from the newly introduced fungicide fluazinam[J]. Contact Dermat., 1995,32(3):160-162. doi: 10.1111/j.1600-0536.1995.tb00807.x

    17. [17]

      Draper A, Cullinan P, Campbell C, Jones M, Taylor A N. Occupational asthma from fungicides fluazinam and chlorothalonil[J]. Occup. Environ. Med., 2003,60(1):76-77. doi: 10.1136/oem.60.1.76

    18. [18]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    19. [19]

      Hu Z C, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    20. [20]

      Razavi S A A, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coord. Chem. Rev., 2020,415213299. doi: 10.1016/j.ccr.2020.213299

    21. [21]

      Nath A, Thomas G M, Hans S, Vennapusa S R, Mandal S. Crystal packing-driven selective Hg(Ⅱ) ion sensing using thiazolothiazole-based water-stable zinc metal-organic framework[J]. Inorg. Chem., 2022,61(4):2227-2233. doi: 10.1021/acs.inorgchem.1c03534

    22. [22]

      Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Metal-organic frameworks with catalytic centers: From synthesis to catalytic application[J]. Coord. Chem. Rev., 2019,378:262-280. doi: 10.1016/j.ccr.2018.02.009

    23. [23]

      Gao J K, Huang Q, Wu Y H, Lan Y Q, Chen B L. Metal-organic frameworks for photo/electrocatalysis[J]. Adv. Energy Sustainability Res., 2021,2(8)2100033. doi: 10.1002/aesr.202100033

    24. [24]

      Wu Y H, Li Y W, Gao J K, Zhang Q C. Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis[J]. SusMat, 2021,1(1):66-87. doi: 10.1002/sus2.3

    25. [25]

      Yang L T, Cai P Y, Zhang L L, Xu X Y, Yakovenko A A, Wang Q, Pang J D, Yuan S, Zou X D, Huang N, Huang Z H, Zhou H C. Liganddirected conformational control over porphyrinic zirconium metalorganic frameworks for size-selective catalysis[J]. J. Am. Chem. Soc., 2021,143(31):12129-12137. doi: 10.1021/jacs.1c03960

    26. [26]

      Thorarinsdottir A E, Harris T D. Metal-organic framework magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    27. [27]

      Lv H F, Li X Y, Wu D X, Liu Y, Li X X, Wu X J, Yang J L. Enhanced curie temperature of two-dimensional Cr(Ⅱ) aromatic heterocyclic metal-organic framework magnets via strengthened orbital hybridization[J]. Nano Lett., 2022,22(4):1573-1579. doi: 10.1021/acs.nanolett.1c04398

    28. [28]

      Lin R B, Xiang S C, Xing H B, Zhou W, Chen B L. Exploration of porous metal-organic frameworks for gas separation and purification[J]. Coord. Chem. Rev., 2019,378:87-103. doi: 10.1016/j.ccr.2017.09.027

    29. [29]

      Xue D X, Wang Q, Bai J F. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coord. Chem. Rev., 2019,378:2-16. doi: 10.1016/j.ccr.2017.10.026

    30. [30]

      Muldoon P F, Collet G, Eliseeva S V, Luo T Y, Petoud S, Rosi N L. Ship-in-a-bottle preparation of long wavelength molecular antennae in lanthanide metal-organic frameworks for biological imaging[J]. J. Am. Chem. Soc., 2020,142(19):8776-8781. doi: 10.1021/jacs.0c01426

    31. [31]

      Liang T, Guo Z, He Y F, Wang Y Y, Li C Y, Li Z, Liu Z H. Cyaninedoped lanthanide metal-organic frameworks for near-infrared Ⅱ bioimaging[J]. Adv. Sci., 2022,9(7)2104561. doi: 10.1002/advs.202104561

    32. [32]

      Shi Z Q, Guo Z J, Zheng H G. Two luminescent Zn(Ⅱ)metal-organic frameworks for exceptionally selective detection of picric acid explosives[J]. Chem. Commun., 2015,51(39):8300-8303. doi: 10.1039/C5CC00987A

    33. [33]

      Liu C H, Guan Q L, Yang X D, Bai E Y, Sun L X, Xing Y H. Polyiodine-modified 1, 3, 5-benzenetricarboxylic acid framework Zn(Ⅱ)/Cd(Ⅱ) complexes as highly selective fluorescence sensors for thiamine hydrochloride, NACs, and Fe3+/Zn2+[J]. Inorg. Chem., 2020,59(12):8081-8098. doi: 10.1021/acs.inorgchem.0c00391

    34. [34]

      Wiwasuku T, Chuaephon A, Habarakada U, Boonmak J, Puangmali T, Kielar F, Harding D J, Youngme S. A water-stable lanthanidebased MOF as a highly sensitive sensor for the selective detection of paraquat in agricultural products[J]. ACS Sustainable Chem. Eng., 2022,10(8):2761-2771. doi: 10.1021/acssuschemeng.1c07966

    35. [35]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    36. [36]

      Sierra-Serrano B, García-García A, Hidalgo T, Ruiz-Camino D, Rodríguez-Diéguez A, Amariei G, Rosal R, Horcajada P, Rojas S. Copper glufosinate-based metal-organic framework as a novel multifunctional agrochemical[J]. ACS Appl. Mater. Interfaces, 2022,14(30):34955-34962. doi: 10.1021/acsami.2c07113

    37. [37]

      ZHANG L W, LIU S Q, ZHANG P P, NI A Y, ZHANG J J. Synthesis, crystal structure, and detection of acidic amino acids of a Cd metal-organic framework based on 5-((naphthalen-1-ylmethyl)amino) isophthalic acid[J]. Chinese J. Inorg. Chem., 2022,38(9):1871-1877.  

    38. [38]

      Qin B W, Zhang X Y, Qiu J J, Gahungu G, Yuan H Y, Zhang J P. Water-robust zinc-organic framework with mixed nodes and its handy mixed-matrix membrane for highly effective luminescent detection of Fe3+, CrO42-, and Cr2O72- in aqueous solution[J]. Inorg. Chem., 2021,60(3):1716-1725. doi: 10.1021/acs.inorgchem.0c03214

    39. [39]

      LIU M R, WANG J J, YUE E L, TANG L, WANG X, HOU X Y, ZHANG Y Q. Synthesis, structure, magnetic, and fluorescent sensing properties of cobalt(Ⅱ) coordination polymer based on 1-(3, 5-dicarboxybenzyl)-1H-pyrazole-3, 5-dicarboxylic acid[J]. Chinese J. Inorg. Chem., 2022,38(8):1601-1608.  

    40. [40]

      Pal S C, Mukherjee D, Das M C. pH-stable luminescent metal-organic frameworks for the selective detection of aqueous-phase Fe and Cr ions[J]. Inorg. Chem., 2022,61(31):12396-12405. doi: 10.1021/acs.inorgchem.2c01793

    41. [41]

      Su Z, Fan J, Okamura T A, Chen M S, Chen S S, Sun W Y, Ueyama N. Interpenetrating and self-penetrating zinc(Ⅱ) complexes with rigid tripodal imidazole-containing ligand and benzenedicarboxylate[J]. Cryst. Growth Des., 2010,10(4):1911-1922. doi: 10.1021/cg100020t

    42. [42]

      Li X J, Yu Z J, Guan T N, Li X X, Ma G C, Guo X F. Substituent effects of isophthalate derivatives on the construction of zinc(Ⅱ) coordination polymers incorporating flexible bis(imidazolyl) ligands[J]. Cryst. Growth Des., 2015,15(1):278-290. doi: 10.1021/cg501327u

    43. [43]

      Zhao Y F, Zeng H, Zhu X W, Lu W G, Li D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications[J]. Chem. Soc. Rev., 2021,50(7):4484-4513. doi: 10.1039/D0CS00955E

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    17. [17]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    18. [18]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

Metrics
  • PDF Downloads(4)
  • Abstract views(458)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return