Citation: Dan LIU, Liang ZHAO, Zhen SHAO, Yin-Shan MENG, Tao LIU. A 2D cyano-bridged W-Co coordination network exhibiting reversible thermal-induced charge transfer[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 367-374. doi: 10.11862/CJIC.2023.001 shu

A 2D cyano-bridged W-Co coordination network exhibiting reversible thermal-induced charge transfer

Figures(3)

  • Magnetic bistable materials featuring switchable spin states are of substantial interest in terms of their promising application in memory devices and switches. Here, we report a new magnetic bistable compound based on W-Co charge transfer. A 2D cyano-bridged heterobimetallic network {[W (CN)8]2[Co (4-nvp)4]3}·4CH3OH (1) (4-nvp=4-(2-(naphthalene-1-yl)vinyl)pyridine) is synthesized by incorporating the 4-nvp into the cyano-bridged WⅤ-Co layer framework to provide intra-and intermolecular π-π interaction. Magnetic studies show that compound 1 exhibits a reversible electron-transfer-coupled spin transition (ETCST) with interconversion between the W—CN— CoHS (HS=high spin) and W —CN—CoLS (LS=low spin) linkages, accompanied by a thermal hysteresis with a width of about 27 K.
  • 加载中
    1. [1]

      Guo F S, He M, Huang G Z, Giblin S R, Billington D, Heinemann F W, Tong M L, Mansikkamäki A, Layfield R A. Discovery of a dyspro-sium metallocene single-molecule magnet with two high-temperature Orbach processes[J]. Inorg. Chem., 2022,61(16):6017-6025. doi: 10.1021/acs.inorgchem.1c03980

    2. [2]

      Kawamura A, Xie J, Boyn J N, Jesse K A, Mcneece A J, Hill E A, Collins K A, Valdez-Moreira J A, Filatov A S, Kurutz J W, Mazziotti D A, Anderson J S. Reversible switching of organic diradical charac-ter via iron-based spin-crossover[J]. J. Am. Chem. Soc., 2020,142(41):17670-17680. doi: 10.1021/jacs.0c08307

    3. [3]

      Zhao L, Meng Y S, Liu Q, Sato O, Shi Q, Oshio H, Liu T. Switching the magnetic hysteresis of an[Fe-NC-W]-based coordination polymer by photoinduced reversible spin crossover[J]. Nat. Chem., 2021,13(7):698-704. doi: 10.1038/s41557-021-00695-1

    4. [4]

      Zhu H L, Meng Y S, Hu J X, Oshio H, Liu T. Photoinduced magnetic hysteresis in a cyanide-bridged two-dimensional[Mn2W] coordination polymer[J]. Inorg. Chem. Front., 2022,9(19):4974-4981. doi: 10.1039/D2QI01101H

    5. [5]

      Ohkoshi S, Tokoro H, Hozumi T, Zhang Y, Hashimoto K, Mathonière C, Bord I, Rombaut G, Verelst M, Cartier dit Moulin C, Villain F. Photoinduced magnetization in copper octacyanomolybdate[J]. J. Am. Chem. Soc., 2006,128(1):270-277. doi: 10.1021/ja0559092

    6. [6]

      Pinkowicz D, Rams M, Mišek M, Kamenev K V, Tomkowiak H, Katrusiak A, Sieklucka B. Enforcing multifunctionality: A pressure-induced spin-crossover photomagnet[J]. J. Am. Chem. Soc., 2015,137(27):8795-8802. doi: 10.1021/jacs.5b04303

    7. [7]

      Xie K P, Ruan Z Y, Lyu B H, Chen X X, Zhang X W, Huang G Z, Chen Y C, Ni Z P, Tong M L. Guest-driven light-induced spin change in an azobenzene loaded metal-organic framework[J]. Angew. Chem. Int. Ed., 2021,60(52):27144-27150. doi: 10.1002/anie.202113294

    8. [8]

      Hicks R G. A new spin on bistability[J]. Nat. Chem., 2011,3(3):189-191. doi: 10.1038/nchem.997

    9. [9]

      Dogariu A, Michael J B, Scully M O, Miles R B. High-gain backward lasing in air[J]. Science, 2011,331(6016):442-445. doi: 10.1126/science.1199492

    10. [10]

      Itkis M E, Chi X, Cordes A W, Haddon R C. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical[J]. Science, 2002,296(5572):1443-1445. doi: 10.1126/science.1071372

    11. [11]

      Fujita W, Awaga K. Room-temperature magnetic bistability in organic radical crystals[J]. Science, 1999,286(5438):261-263. doi: 10.1126/science.286.5438.261

    12. [12]

      Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F. Electronic read-out of a single nuclear spin using a molecular spin transistor[J]. Nature, 2012,488(7411):357-360. doi: 10.1038/nature11341

    13. [13]

      Ohkoshi S, Imoto K, Tsunobuchi Y, Takano S, Tokoro H. Light-in-duced spin-crossover magnet[J]. Nat. Chem., 2011,3(7):564-569. doi: 10.1038/nchem.1067

    14. [14]

      Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico A M, Arrio M, Cornia A, Gatteschi D, Sessoli R. Magnetic memory of a single-molecule quantum magnet wired to a gold surface[J]. Nat. Mater., 2009,8(3):194-197. doi: 10.1038/nmat2374

    15. [15]

      Pierpont C G. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands[J]. Coord. Chem. Rev., 2001,216-217:99-125. doi: 10.1016/S0010-8545(01)00309-5

    16. [16]

      Aguilà D, Prado Y, Koumousi E S, Mathonière C, Clérac R. Switch-able Fe/Co Prussian blue networks and molecular analogues[J]. Chem. Soc. Rev., 2015,45(1):203-224.

    17. [17]

      Ohkoshi S, Tokoro H, Hashimoto K. Temperature-and photo-induced phase transition in rubidium manganese hexacyanoferrate[J]. Coord. Chem. Rev., 2005,249(17):1830-1840.

    18. [18]

      WANG X Y, WANG K J, LI H Q, SUN Y C. Synthesis and properties of an iron spin crossover compound with 1D chains bridged by hydrogen bonds[J]. Chinese J. Inorg. Chem., 2020,36(6):1143-1148.  

    19. [19]

      YANG R, ZHANG S Y, WANG R G, MENG Y S, LIU T. Synthesis and magnetic properties of mononuclear cobalt(Ⅱ) spin crossover complexes from complementary terpyridine ligand pairing. Chinese J. Inorg. Chem., 2022, 38(8): 1477-1486

    20. [20]

      Jiang W J, Jiao C Q, Meng Y S, Zhao L, Liu Q, Liu T. Switching single chain magnet behavior via photoinduced bidirectional metal-to-metal charge transfer[J]. Chem. Sci., 2018,9(3):617-622. doi: 10.1039/C7SC03401F

    21. [21]

      Weinberg D R, Gagliardi C J, Hull J F, Murphy C F, Kent C A, Westlake B C, Paul A, Ess D H, Mccafferty D G, Meyer T J. Proton-coupled electron transfer[J]. Chem. Rev., 2012,112(7):4016-4093. doi: 10.1021/cr200177j

    22. [22]

      Bernardo B, Cheyns D, Verreet B, Schaller R D, Rand B P, Giebink N C. Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells[J]. Nat. Commun., 2014,5(1):1-7.

    23. [23]

      Akimov A V, Neukirch A J, Prezhdo O V. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces[J]. Chem. Rev., 2013,113(6):4496-4565. doi: 10.1021/cr3004899

    24. [24]

      Meng Y S, Sato O, Liu T. Manipulating metal-to-metal charge trans-fer for materials with switchable functionality[J]. Angew. Chem. Int. Ed., 2018,57(38):12216-12226. doi: 10.1002/anie.201804557

    25. [25]

      Mathonière C. Metal-to-Metal Electron Transfer: A powerful tool for the design of switchable coordination compounds[J]. Eur. J. Inorg. Chem., 2018(3/4):248-258.

    26. [26]

      Li D F, Clérac R, Roubeau O, Harté E, Mathonière C, Le Bris R, Holmes S M. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobaltiron Prussian blue analogue[J]. J. Am. Chem. Soc., 2008,130(1):252-258. doi: 10.1021/ja0757632

    27. [27]

      Zhang Y Z, Li D F, Clérac R, Kalisz M, Mathonière C, Holmes S M. Reversible thermally and photoinduced electron transfer in a cyano-bridged {Fe2Co2} square complex[J]. Angew. Chem. Int. Ed., 2010,49(22):3752-3756. doi: 10.1002/anie.201000765

    28. [28]

      Koumousi E S, Jeon I, Gao Q, Dechambenoit P, Woodruff D N, Merzeau P, Buisson L, Jia X, Li D F, Volatron F, Mathonière C, Clérac R. Metal-to-metal electron transfer in Co/Fe Prussian blue molecular analogues: The ultimate miniaturization[J]. J. Am. Chem. Soc., 2014,136(44):15461-15464. doi: 10.1021/ja508094h

    29. [29]

      Liu T, Dong P D, Kanegawa S, Kang S, Sato O, Shiota Y, Yoshizawa K, Hayami S, Wu S, He C, Duan C Y. Reversible electron transfer in a linear {Fe2Co} trinuclear complex induced by thermal treatment and photoirraditaion[J]. Angew. Chem. Int. Ed., 2012,51(18):4367-4370. doi: 10.1002/anie.201201305

    30. [30]

      Huang W, Ma X, Sato O, Wu D Y. Controlling dynamic magnetic properties of coordination clusters via switchable electronic configuration[J]. Chem. Soc. Rev., 2021,50(12):6832-6870. doi: 10.1039/D1CS00101A

    31. [31]

      Liu Q, Yao N T, Sun H Y, Hu J X, Meng Y S, Liu T. Light actuated single-chain magnet with magnetic coercivity[J]. Inorg. Chem. Front., 2022,9(19):5093-5104. doi: 10.1039/D2QI01371A

    32. [32]

      Arimoto Y, Ohkoshi S, Zhong Z J, Seino H, Mizobe Y, Hashimoto K. Photoinduced magnetization in a two-dimensional cobalt octacyano-tungstate[J]. J. Am. Chem. Soc., 2003,125(31):9240-9241. doi: 10.1021/ja030130i

    33. [33]

      Chorazy S, Podgajny R, Nogas W, Nitek W, Koziel M, Rams M, Juszynska-Galazka E, Zukrowski J, Kapusta C, Nakabayashi K, Fujimoto T, Ohkoshi S, Sieklucka B. Charge transfer phase transi-tion with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster[J]. Chem. Commun., 2014,50(26):3484-3487. doi: 10.1039/c3cc48029a

    34. [34]

      Ozaki N, Tokoro H, Hamada Y, Namai A, Matsuda T, Kaneko S, Ohkoshi S. Photoinduced magnetization with a high Curie temperature and a large coercive field in a Co-W bimetallic assembly[J]. Adv. Funct. Mater., 2012,22(10):2089-2093. doi: 10.1002/adfm.201102727

    35. [35]

      Herrera J M, Marvaud V, Verdaguer M, Marrot J, Kalisz M, Mathonière C. Reversible photoinduced magnetic properties in the heptanuclear complex[Mo (CN)2(CNCuL)6]8+ : A photomagnetic high-spin mole-cule[J]. Angew. Chem. Int. Ed., 2004,43(41):5468-5471. doi: 10.1002/anie.200460387

    36. [36]

      Zhao L, Duan R, Zhuang P F, Zheng H, Jiao C Q, Wang J L, He C, Liu T. 12-Metal 36-membered ring based W-Co layers showing spin-glass behavior[J]. Dalton Trans., 2015,44(28):12613-12617. doi: 10.1039/C5DT01318F

    37. [37]

      Podgajny R, Chorazy S, Nitek W, Rams M, Majcher A M, Marszałek B, Zukrowski J, Kapusta C, Sieklucka B. Co—NC—W and Fe— NC—W electron-transfer channels for thermal bistability in trimetal-lic {Fe6Co3[W(CN)8]6} cyanido-bridged cluster[J]. Angew. Chem. Int. Ed., 2013,52(3):896-900. doi: 10.1002/anie.201208023

    38. [38]

      Ohkoshi S, Tokoro H. Photomagnetism in cyano-bridged bimetal assemblies[J]. Acc. Chem. Res., 2012,45(10):1749-1758. doi: 10.1021/ar300068k

    39. [39]

      Ohkoshi S, Hamada Y, Matsuda T, Tsunobuchi Y, Tokoro H. Crystal structure, charge-transfer-induced spin transition, and photoreversible magnetism in a cyano-bridged cobalt-tungstate bimetallic assembly[J]. Chem. Mater., 2008,20(9):3048-3054. doi: 10.1021/cm703258n

    40. [40]

      Mahfoud T, Molnár G, Bonhommeau S, Cobo S, Salmon L, Demont P, Tokoro H, Ohkoshi S, Boukheddaden K, Bousseksou A. Electric-field-induced charge-transfer phase transition: A promising approach toward electrically switchable devices[J]. J. Am. Chem. Soc., 2009,131(41):15049-15054. doi: 10.1021/ja9055855

    41. [41]

      Ohkoshi S, Ikeda S, Hozumi T, Kashiwagi T, Hashimoto K. Photoin-duced magnetization with a high Curie temperature and a large coer-cive field in a cyano-bridged cobalt-tungstate bimetallic assembly[J]. J. Am. Chem. Soc., 2006,128(16):5320-5321. doi: 10.1021/ja060510e

    42. [42]

      Mondal A, Chamoreau L, Li Y, Journaux Y, Seuleiman M, Lescouëzec R. W-Co discrete complex exhibiting photo-and thermo-induced magnetisation[J]. Chem.-Eur. J., 2013,19(24):7682-7685. doi: 10.1002/chem.201300661

  • 加载中
    1. [1]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    2. [2]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    3. [3]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    4. [4]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    5. [5]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    6. [6]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    7. [7]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    8. [8]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    9. [9]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    10. [10]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    11. [11]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    14. [14]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    15. [15]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    16. [16]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    19. [19]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    20. [20]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

Metrics
  • PDF Downloads(2)
  • Abstract views(372)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return