Citation: Yan XU, Xuan WANG, Zhao-Wen LIU, Xiao-Yang WANG, Wen-Kang GAO, Lei CUI. Pyridinium/imidazolium-triggered modulation of structure and properties of cobalt naphthalene-diphosphates[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 193-201. doi: 10.11862/CJIC.2022.291 shu

Pyridinium/imidazolium-triggered modulation of structure and properties of cobalt naphthalene-diphosphates

Figures(6)

  • By the introduction of protonated 1, 3-di(4-pyridyl)propane (1, 3-dppH22+) and protonated bis(imidazol-1- ylmethyl)benzene (1, 4-bixH22+) as a cationic template, three new cobalt naphthalene-diphosphate coordination poly- mers based on 1, 4-naphthalenediphosphonic acid (1, 4-ndpaH4), namely (1, 3-dppH2)2[Co4(1, 4-ndpa)(1, 4-ndpaH)2(1, 4-ndpaH2)]·6H2O (1), (1, 4-bixH2)0.5[Co(1, 4-ndpaH)] (2), and (1, 4-bixH2)0.5[Co2(1, 4-ndpaH)(1, 4-ndpaH2)(H2O)2] (3), have been hydrothermally synthesized. Complexes 1-3 were characterized by elemental analysis, infrared spectros- copy, single crystal X -ray diffraction, powder X -ray diffraction, and thermogravimetric analysis, respectively. In complexes 1 and 2, inorganic chains of corner-sharing {CoO4} and {PO3C} tetrahedron are cross-linked by naphtha- lene ligands into 3D open-framework structures. The protonated di-pyridinium/imidazolium moieties, 1, 3-dppH22+ for 2 and 1, 4-bixH22+ for 2, lie inside the skeletal voids of the crystal structure, respectively. Interestingly, complex 3 with similar chemical composition to 2 except for an additional 1, 4-ndpaH22- ligand and two coordinated water mole- cules shows a 2D undulating layer structure, where the chains of corner-sharing {CoO5} trigonal bipyramid, {CoO6} octahedron, and {PO3C} tetrahedron are cross - linked by naphthalene groups. Adjacent layers are packed in AB stacking into the supramolecular structure, in which 1, 4-bixH22+ ions fill and balance the charge of 3. Magnetic stud- ies reveal that dominant antiferromagnetic interactions between the magnetic centers are propagated in complexes 1 and 2.
  • 加载中
    1. [1]

      Clearfield A, Demadis K. Metal phosphonate chemistry: From synthesis to applications. Cambridge: Royal Society of Chemistry, 2012.

    2. [2]

      Bao S S, Zheng L M. Magnetic materials based on 3d metal phosphonates[J]. Coord. Chem. Rev., 2016,319:63-85. doi: 10.1016/j.ccr.2016.05.002

    3. [3]

      Yücesan G, Zorlu Y, Stricker M, Beckmann J. Metal - organic solids derived from arylphosphonic acids[J]. Coord. Chem. Rev., 2018,369105122.

    4. [4]

      Goura J, Chandrasekhar V. Molecular metal phosphonates[J]. Chem. Rev., 2015,115:6854-6965. doi: 10.1021/acs.chemrev.5b00107

    5. [5]

      Mao J G. Structures and luminescent properties of lanthanide phosphonates[J]. Coord. Chem. Rev., 2007,251:1493-1520. doi: 10.1016/j.ccr.2007.02.008

    6. [6]

      Firmino A D G, Figueira F, Tome J P C, Paz F A A, Rocha J. Metalorganic frameworks assembled from tetraphosphonic ligands and lanthanides[J]. Coord. Chem. Rev., 2018,355:133-149. doi: 10.1016/j.ccr.2017.08.001

    7. [7]

      Jia J G, Zheng L M. Metal-organic nanotubes: Designs, structures and functions[J]. Coord. Chem. Rev., 2020,403213083. doi: 10.1016/j.ccr.2019.213083

    8. [8]

      Weng G G, Zheng L M. Chiral metal phosphonates: Assembly, structures and functions[J]. Sci. China Chem., 2020,63(5):619-636. doi: 10.1007/s11426-020-9707-4

    9. [9]

      Liu B, Liu J C, Shen Y, Feng J S, Bao S S, Zheng L M. Polymorphic layered copper phosphonates: Exfoliation and proton conductivity studies[J]. Dalton Trans., 2019,48:6539-6545. doi: 10.1039/C9DT00970A

    10. [10]

      Huang J, Ding H M, Xu Y, Zeng D, Zhu H, Zang D M, Bao S S, Ma Y Q, Zheng L M. Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination polymers[J]. Nat. Commun., 2017,82131. doi: 10.1038/s41467-017-02260-2

    11. [11]

      Huang X D, Wen G H, Bao S S, Jia J G, Zheng L M. Thermo- and light-triggered reversible interconversion of dysprosium- anthracene complexes and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021,12:929-937. doi: 10.1039/D0SC04851H

    12. [12]

      Liu S B, Bao S S, Zheng L M. Polar layered coordination polymers incorporating triazacyclononane - triphosphonate metalloligands[J]. Dalton Trans., 2020,49:3758-3765. doi: 10.1039/C9DT03858B

    13. [13]

      Wen G H, Chen X M, Xu K, Xu X J, Bao S S, Zheng L M. Uranyl phosphonates: Crystalline materials and nanosheets for temperature sensing[J]. Dalton Trans., 2021,50:17129-17139. doi: 10.1039/D1DT02977K

    14. [14]

      Feng J S, Bao S S, Ren M, Cai Z S, Zheng L M. Chirality- and pHcontrolled supramolecular isomerism in cobalt phosphonates and its impact on the magnetic behavior[J]. Chem. - Eur. J., 2015,2117336. doi: 10.1002/chem.201502335

    15. [15]

      Tang S F, Li L J, Wang C, Zhao X B. Investigation of the structure variation of metal diphosphonates with the changing of N-donor auxiliary ligands and their properties[J]. CrystEngComm, 2014,169104. doi: 10.1039/C4CE01266F

    16. [16]

      Rom T, Kumar N, Sharma M, Gaur A, Paul A K. Colossal dielectric responses from the wide band gap 2D - semiconducting amine templated hybrid framework materials[J]. Inorg. Chem., 2020,59(14)94659470.

    17. [17]

      Fu R B, Hu S M, Wu X T. New layered metal phosphonates based on functionalized phosphonic acids[J]. Cryst. Growth Des., 2015,15(6):3004-3014. doi: 10.1021/acs.cgd.5b00423

    18. [18]

      Rom T, Biswas R, Haldar K K, Sarkar S, Saha U, Paul A K. Charge separated one-dimensional hybrid cobalt/nickel phosphonate frameworks: A facile approach to design bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions[J]. Inorg. Chem., 2021,60:15106-15111. doi: 10.1021/acs.inorgchem.1c02320

    19. [19]

      Paul A K, Kanagaraj R, Jana A K, Maji P K. Novel amine templated three-dimensional zinc-organophosphonates with variable poreopenings[J]. CrystEngComm, 2017,19:6425-6435. doi: 10.1039/C7CE00994A

    20. [20]

      Ma Y J, Hu J X, Han S D, Pan J, Li J H, Wang G M. Manipulating on/off single-molecule magnet behavior in a Dy(Ⅲ)-based photochromic complex[J]. J. Am. Chem. Soc., 2020,142:2682-2689. doi: 10.1021/jacs.9b13461

    21. [21]

      Liu H H, Ma Y J, Han S D, Li J H, Wang G M. Zinc diphosphonates with extended dipyridine units: Synthesis, structures, in situ reactions, and photochromism[J]. Dalton Trans., 2019,48:3955-3961. doi: 10.1039/C9DT00081J

    22. [22]

      Bulut A, Zorlu Y, Wörle M, Çetinkaya A C, Kurt H, Tam B, Yazaydın A, Beckmann J, Yücesan G. Short naphthalene organophosphonate linkers to microporous frameworks[J]. ChemistrySelect, 2017,27050. doi: 10.1002/slct.201701411

    23. [23]

      Kahn O. Molecular magnetism. New York: Wiley-VCH, 1993.

    24. [24]

      Zou Q, Bao S S, Huang X D, Wen G H, Jia J G, Wu L Q, Zheng L M. Cobalt(Ⅱ)-dianthracene frameworks: Assembly, exfoliation and properties[J]. Chem.-Asian J., 2021,16:1-11. doi: 10.1002/asia.202001239

    25. [25]

      Zheng T, Bao S S, Ren M, Zheng L M. Cobalt phosphonates based on 4-(ethoxycarbonyl)-naphthalen-1-yl)phosphonic acid[J]. Dalton Trans., 2013,42:16396-16402. doi: 10.1039/c3dt52125g

    26. [26]

      Pan J, Ma Y J, Han S D, Xue Z Z, Wang G M. Switching the zincdiphosphonates from 1D chain to 2D layer and 3D framework by the modulation of a flexible organic amine[J]. Cryst. Growth Des., 2019,19:2919-2926. doi: 10.1021/acs.cgd.9b00139

    27. [27]

      Paul A K, Kanagaraj R, Pant N, Naveen K. Rare examples of aminetemplated organophosphonate open - framework compounds: Combined role of metal and amine for structure building[J]. Cryst. Growth Des., 2017,17:5620-5624. doi: 10.1021/acs.cgd.7b01110

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    11. [11]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    15. [15]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(12)
  • Abstract views(427)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return