Citation: Liang WEI, Jian-Kai WANG, Kai-Ge LIU, Qing-Yun ZHOU, Hao-Xin PAN, Shan FAN, Yong ZHANG. Nanocellulose/reduced graphene oxide composites for high performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 456-464. doi: 10.11862/CJIC.2022.287 shu

Nanocellulose/reduced graphene oxide composites for high performance supercapacitors

Figures(7)

  • Nanocellulose/reduced graphene oxide (NC/rGO) composites were prepared by a simple one-step hydrothermal method using high-concentration graphene oxide (GO) solution as the reaction precursor and nanocellulose (NC) as the physical spacer and electrolyte reservoirs. Subsequently, we explored the potential of NC/rGO as electrode materials for supercapacitors. Due to its dense porous structure and large oxygen-containing functional group content, NC/rGO-1 prepared with 1 mL NC exhibited the best electrochemical performance. The binder-free symmetric supercapacitor based on NC/rGO-1 showed high gravimetric and volumetric specific capacitance of 269.33 F·g-1 and 350.13 F·cm-3 at a current density of 0.3 A·g-1. These values can still reach 215.88 F·g-1 and 280.62 F·cm-3 at 10.0 A·g-1 (80.15% of its initial value). The assembled device also displayed high gravimetric and volumetric energy densities (9.3 Wh·kg-1 and 12.13 Wh·L-1) and excellent cycling performance (the initial specific capacitance decreased by only 6.02% after 10 000 cycles at 10 A·g-1).
  • 加载中
    1. [1]

      Yang B Y, Qian Z M, Howard S W, Vaughn M G, Fan S J, Liu K K, Dong G H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis[J]. Environ. Pollut., 2018,235:576-588. doi: 10.1016/j.envpol.2018.01.001

    2. [2]

      Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012,488(7411):294-303. doi: 10.1038/nature11475

    3. [3]

      Nechodom M, Schuetzle D, Ganz D, Cooper J. Sustainable forests, renewable energy, and the environment[J]. Environ. Sci. Technol., 2008,42(1):13-18. doi: 10.1021/es0870350

    4. [4]

      LIU H, YANG D H, WANG X Y, HAN B H. Metal-organic framework-derived hollow carbon materials for electrochemical energy storage and oxygen reduction reaction[J]. Chinese J. Inorg. Chem., 2019,35(11):1921-1933.  

    5. [5]

      WU K, ZHANG G J. Energy and materials chemistry[J]. Acta Phys.-Chim. Sin., 2021,37(11):7-9.

    6. [6]

      Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016,1(4)16013. doi: 10.1038/natrevmats.2016.13

    7. [7]

      Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat. Chem., 2015,7(1):19-29. doi: 10.1038/nchem.2085

    8. [8]

      YANG L, WU T T, LI H Q, JIN B Y, HE X J. Preparation of nitrogendoped carbon nanonets for high-performance supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(6):1017-1026.  

    9. [9]

      Xu T Z, Li Z W, Wang D, Zhang M R, Ai L F, Chen Z Y, Zhang J H, Zhang X G, Shen L F. A fast proton-induced pseudocapacitive supercapacitor with high energy and power density[J]. Adv. Funct. Mater., 2022,322107720. doi: 10.1002/adfm.202107720

    10. [10]

      Asl M S, Hadi R, Salehghadimi L, Tabrizi A G, Farhoudian S, Babapoor A, Pahlevani M. Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: Recent progress and future perspectives[J]. J. Energy Storage, 2022,50104223. doi: 10.1016/j.est.2022.104223

    11. [11]

      El-Kady M F, Shao Y L, Kaner R B. Graphene for batteries, supercapacitors and beyond[J]. Nat. Rev. Mater., 2016,1(7)16033. doi: 10.1038/natrevmats.2016.33

    12. [12]

      Li P, Wang W Y, Su F Y, Wang X Y, Zhang X L, Zheng X C. N-doped interconnected porous graphene as advanced electrode material for supercapacitors[J]. J. Alloy. Compd., 2022,893162218. doi: 10.1016/j.jallcom.2021.162218

    13. [13]

      Moreno-Fernandez G, Gomez-Urbano J L, Enterria M, Rojo T, Carriazo D. Correction: Flat-shaped carbon-graphene microcomposites as electrodes for high energy supercapacitors[J]. J. Mater. Chem. A, 2020,8(3)1486. doi: 10.1039/C9TA90299F

    14. [14]

      Wang J, Xu Y L, Ding B, Chang Z, Zhang X G, Yamauchi Y, Wu K C W. Confined self-assembly in two-dimensional interlayer space: Monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework[J]. Angew. Chem. Int. Ed., 2018,57(11):2894-2898. doi: 10.1002/anie.201712959

    15. [15]

      Liu R N, Wang Y H, Wu X L. Two-dimensional nitrogen and oxygen Co-doping porous carbon nanosheets for high volumetric performance supercapacitors[J]. Microporous Mesoporous Mater., 2020,295109954. doi: 10.1016/j.micromeso.2019.109954

    16. [16]

      Kumar H, Sharma R, Yadav A, Kumari R. Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: A review[J]. J. Energy Storage., 2020,33102032.

    17. [17]

      Olabi A G, Abdelkareem M A, Wilberforce T, Sayed E T. Application of graphene in energy storage device—A review[J]. Renew. Sust. Energ. Rev., 2021,135110026. doi: 10.1016/j.rser.2020.110026

    18. [18]

      Lin Y M, Su S Y, Wang R, Dai H M, Lai L Q, Jiang Y, Zhu X H. Hydrothermal synthesis of reduced graphene oxide for supercapacitor electrode materials and the effect of added sodium alginate on its structure and performance[J]. J. Mater. Sci.-Mater. Electron., 2021,32(22):26688-26699. doi: 10.1007/s10854-021-07046-3

    19. [19]

      Yi T, Zhao H Y, Mo Q, Pan D L, Liu Y, Huang L J, Xu H, Hu B, Song H N. From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils[J]. Materials, 2020,13(22)5062. doi: 10.3390/ma13225062

    20. [20]

      Tian W G, Gao X X, Zhang J M, Yu J, Zhang J. Cellulose nanosphere: Preparation and applications of the novel nanocellulose[J]. Carbohydr. Polym., 2022,277118863. doi: 10.1016/j.carbpol.2021.118863

    21. [21]

      Miyashiro D, Hamano R, Umemura K. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes[J]. Nanomaterials, 2020,10(2)186. doi: 10.3390/nano10020186

    22. [22]

      Dutta S, Kim J, Ide Y, Kim J H, Hossain M S A, Bando Y, Yamauchi Y, Wu K C W. 3D network of cellulose-based energy storage devices and related emerging applications[J]. Mater. Horiz., 2017,4(4):522-545. doi: 10.1039/C6MH00500D

    23. [23]

      Ummartyotin S, Manuspiya H. An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based battery[J]. Renew. Sust. Energ. Rev., 2015,50:204-213. doi: 10.1016/j.rser.2015.05.014

    24. [24]

      Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: a new family of nature-based materials[J]. Angew. Chem. Int. Ed., 2011,50(24):5438-5466. doi: 10.1002/anie.201001273

    25. [25]

      Du X, Zhang Z, Liu W, Deng Y L. Nanocellulose-based conductive materials and their emerging applications in energy devices—A review[J]. Nano Energy, 2017,35:299-320. doi: 10.1016/j.nanoen.2017.04.001

    26. [26]

      Chen W S, Yu H P, Lee S Y, Wei T, Li J, Fan Z J. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage[J]. Chem. Soc. Rev., 2018,47(8):2837-2872.

    27. [27]

      Habibi Y. Key advances in the chemical modification of nanocelluloses[J]. Chem. Soc. Rev., 2014,43(5):1519-1542.

    28. [28]

      Fan S, Wei L, Liu X J, Ma W H, Lou C H, Wang J K, Zhang Y. High-density oxygen-enriched graphene hydrogels for symmetric supercapacitors with ultrahigh gravimetric and volumetric performance[J]. Int. J. Hydrog. Energy, 2021,46(80):39969-39982. doi: 10.1016/j.ijhydene.2021.09.227

    29. [29]

      Luzi F, Puglia D, Sarasini F, Tirillo J, Maffei G, Zuorro A, Lavecchia R, Kenny J M, Torre L. Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss)[J]. Cabohydr. Polym., 2019,209:328-337.

    30. [30]

      Kasiri N, Fathi M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions[J]. Int. J. Biol. Macromol., 2018,106:1023-1031.

    31. [31]

      Xu Y X, Sheng K X, Li C, Shi G Q. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010,4:4324-4330.

    32. [32]

      Xue B C, Wang X F, Feng Y, Chen Z M, Liu X Y. Self-template synthesis of nitrogen-doped porous carbon derived from rice husks for the fabrication of high volumetric performance supercapacitors[J]. J. Energy Storage, 2020,30101405.

    33. [33]

      Chao Y Z, Chen S B, Chen H Q, Hu X J, Ma Y, Gao W S, Bai Y X. Densely packed porous graphene film for high volumetric performance supercapacitor[J]. Electrochim. Acta, 2018,276:118-124.

    34. [34]

      Ma H Y, Zhou Q Q, Wu M M, Zhang M, Yao B W, Gao T T, Wang H Y, Li C, Sui D, Chen Y S, Shi G Q. Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings[J]. J. Mater. Chem. A, 2018,6(15):6587-6594.

    35. [35]

      Zhou Q Q, Wu M M, Zhang M, Xu G C, Yao B W, Li C, Shi G Q. Graphene-based electrochemical capacitors with integrated high performance[J]. Mater. Today Energy, 2017,6:181-188.

    36. [36]

      Chen S B, Gao W S, Chao Y Z, Ma Y, Zhang Y H, Ren N, Chen H Q, Jin L J, Li J G, Bai Y X. Low temperature preparation of pore structure controllable graphene for high volumetric performance supercapacitors[J]. Electrochim. Acta, 2018,273:181-190.

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(4)
  • Abstract views(769)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return