Citation: Xiao-Tao MA, Xian-Xian ZHOU, Yu LI, Xiao-Xiao LIU, Qian GUO, Dong-Hong DUAN, Shi-Bin LIU. Controllable synthesis of N-doped porous carbon decorated with nano CoSe and catalytic effect on polysulfides conversion for Li-S battery[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 443-455. doi: 10.11862/CJIC.2022.286 shu

Controllable synthesis of N-doped porous carbon decorated with nano CoSe and catalytic effect on polysulfides conversion for Li-S battery

Figures(8)

  • The poor cycle stability and rate performance are the technical obstacles to realizing the commercialization of Li-S battery, and one of the main reasons is the slow electrochemical conversion rates of sulfur active species in the sulfur electrode. In this work, for improving the electrochemical conversion of polysulfides in sulfur electrodes, ZIF-9 derived N-doped porous carbon decorated with CoSe (CoSe/NC) was chosen and obtained through carbonization, acid pickling, and selenylation processes. The electrochemical kinetics of polysulfide conversion on CoSe/NC was studied using a flowing electrolyte three-electrode system. As a result, CoSe/NC composite took an effect on enhancing the reaction rates of polysulfide conversion. CoSe/NC composite gave more help to decrease the reaction overpotential under a current density of 0.2 mA·cm-2. Meanwhile, the high response currents would be obtained with the help of CoSe/NC composite under an overpotential of 0.1 V. Moreover, the redox reaction for Li2S2 on CoSe/NC composite had the largest increase in amplitude in exchange current density. Therefore, the batteries assembled with CoSe/NC composite as sulfur host displayed fantastic electrochemical performances. The initial discharge specific capacity was 1068 mAh·g-1 at 1C (1C=1675 mA·g-1) and the retentive capacity was as high as 693 mAh·g-1 after 500 cycles. In addition, the discharge specific capacity can be up to 819 mAh·g-1 even at a high current density of 3C.
  • 加载中
    1. [1]

      He Y B, Chang Z, Wu S C, Zhou H S. Effective strategies for long-cycle life lithium-sulfur batteries[J]. J. Mater. Chem. A, 2018,6(15):6155-6182. doi: 10.1039/C8TA01115J

    2. [2]

      LEI D Y, LI Y Y, ZHAO Z R, DUAN J X, LI H, XIANG M W, GUO J M. Preparation and lithium-storage performance of in-situ nitrogen dopedporous carbon/sulfur composite cathodes derived from passiflora edulis peel[J]. Chinese J. Inorg. Chem., 2022,38(5):873-883.  

    3. [3]

      HAN F C, LI F J, CHEN L, HE L Y, JIANG Y N, XU S D, ZHANF D, QI L. Enhance of CoSe2/C composites modified separator on electrochemical performance of Li-S batteries at high sulfur loading[J]. Chem. J. Chinese Universities, 2022,43(8)20220163.  

    4. [4]

      Lu Z Y, Jiang K, Chen G X, Wang H T, Cui Y. Lithium electrochemical tuning for electrocatalysis[J]. Adv. Mater., 2018,30(48)1800978. doi: 10.1002/adma.201800978

    5. [5]

      Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018,5(1)1700270. doi: 10.1002/advs.201700270

    6. [6]

      Li Y, Wang X Z, Wang L X, Jia D Z, Yang Y Z, Liu X G, Sun M H, Zhao Z B, Qiu J S. Ni@Ni3N embedded on three-dimensional carbon nanosheets for high-performance lithium/sodium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2021,13(41):48536-48545. doi: 10.1021/acsami.1c11793

    7. [7]

      Liu Y Z, Yang C H, Li Y P, Zheng F H, Li Y J, Deng Q, Zhong W T, Wang G, Liu T Z. FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries[J]. Chem. Eng. J., 2020,393124590. doi: 10.1016/j.cej.2020.124590

    8. [8]

      Wang X W, Xie Y, Bateer B H, Pan K, Zhang X M, Wu J, Fu H G. CoSe2/N-doped carbon hybrid derived from ZIF-67 as high-efficiency counter electrode for dye-sensitized solar cells[J]. ACS Sustain. Chem. Eng., 2019,7(2):2784-2791. doi: 10.1021/acssuschemeng.8b05995

    9. [9]

      Yuan B, Hua D, Gu X X, Shen Y, Xu L C, Li X Y, Zheng B, Wu J S, Zhang W N, Li S, Huo F W. Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li-S batteries[J]. J. Energy Chem., 2020,48:128-135. doi: 10.1016/j.jechem.2019.12.020

    10. [10]

      Upadhyay S N, Pakhira S. Mechanism of electrochemical oxygen reduction reaction at two-dimensional Pt-doped MoSe2 material: An efficient electrocatalyst[J]. J. Mater. Chem. C, 2021,9(34):11331-11342. doi: 10.1039/D1TC02193A

    11. [11]

      Pu M J, Guo Y F, Guo W L. Strain-mediated oxygen evolution reaction on magnetic two-dimensional monolayers[J]. Nanoscale Horiz., 2022,7(11):1404-1410. doi: 10.1039/D2NH00318J

    12. [12]

      Gao T P, Wong K W, Ng K M. Impacts of morphology and N-doped carbon encapsulation on electrochemical properties of NiSe for lithium storage[J]. Energy Storage Mater., 2020,25:210-216. doi: 10.1016/j.ensm.2019.10.013

    13. [13]

      Jeon Y, Lee J, Jo H, Hong H, Lee L Y S, Piao Y Z. Co/Co3O4-embedded N-doped hollow carbon composite derived from a bimetallic MOF/ZnO core-shell template as a sulfur host for Li-S batteries[J]. Chem. Eng. J., 2021,407126967. doi: 10.1016/j.cej.2020.126967

    14. [14]

      Song Y, Wang J, Li X Y, Zhao C X, Huo J R, He C Z. Boosting polysulfides immobilization and conversion through CoS2 catalytic sites loaded carbon fiber for robust lithium sulfur batteries[J]. J. Colloid Interf. Sci., 2022,608:963-972. doi: 10.1016/j.jcis.2021.10.015

    15. [15]

      Sun W W, Li Y J, Liu S K, Liu C, Tan X J, Xie K. Mechanism investigation of iron selenide as polysulfide mediator for long-life lithiumsulfur batteries[J]. Chem. Eng. J., 2021,416129166. doi: 10.1016/j.cej.2021.129166

    16. [16]

      Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. A High-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries[J]. Adv. Mater., 2020,32(32)2002168. doi: 10.1002/adma.202002168

    17. [17]

      He J R, Manthiram A. 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li-S full cells[J]. Adv. Energy Mater., 2020,10(41)2002654. doi: 10.1002/aenm.202002654

    18. [18]

      Li Y, Wang X Z, Sun M H, Xiao J, Zhang B L, Ai L S, Zhao Z B, Qiu J S. CoSe nanoparticle embedded B, N-codoped carbon nanotube array as a dual-functional host for a high-performance Li-S full battery[J]. ACS Nano, 2022,16(10):17008-17020. doi: 10.1021/acsnano.2c07137

    19. [19]

      Chen L, Yang W W, Liu J G, Zhou Y. Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries[J]. Nano Res., 2019,12(11):2743-2748. doi: 10.1007/s12274-019-2508-3

    20. [20]

      Shi L W, Yuan W B, Liu J L, Zhang W Q, Hou S F, Hu C. P-doped NiSe2 nanorods grown on activated carbon cloths for high-loading lithium-sulfur batteries[J]. J. Alloy. Compd., 2021,875160045. doi: 10.1016/j.jallcom.2021.160045

    21. [21]

      Jing E D, Chen L, Xu S D, Tian W Z, Zhang D, Wang N N, Bai Z C, Zhou X X, Liu S B, Duan D H, Qiu X Y. Dual redox catalysis of VN/nitrogen-doped graphene nanocomposites for high-performance lithium-sulfur batteries[J]. J. Energy Chem., 2022,64:574-582. doi: 10.1016/j.jechem.2021.05.015

    22. [22]

      Yu Y, Zhen S Y, Cao S S, Wu P S, Ma G Z, Li A J, Zhang J D. Rational design of Co4N nanoparticle loaded porous carbon as a sulfur matrix for advanced lithium-sulfur batteries[J]. Dalton Trans., 2021,50(1):116-123. doi: 10.1039/D0DT03380D

    23. [23]

      Xiao K K, Chen Z, Liu Z, Zhang L L, Cai X Y, Song C S, Fan Z F, Chen X H, Liu J L, Shen Z X. N-doped carbon sheets arrays embedded with CoP nanoparticles as high-performance cathode for Li-S batteries via triple synergistic effects[J]. J. Power Sources, 2020,455227959. doi: 10.1016/j.jpowsour.2020.227959

    24. [24]

      Zhang F, Li Z, Cao T, Qin K, Xu Q J, Liu H M, Xia Y Y. Multishelled Ni2P microspheres as multifunctional sulfur host 3D-printed cathode materials ensuring high areal capacity of lithium-sulfur batteries[J]. ACS Sustain. Chem. Eng., 2021,9(17):6097-6106. doi: 10.1021/acssuschemeng.1c01580

    25. [25]

      DIAO Y, XIE K, HONG X B, XIONG S Z. Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery[J]. Acta Chim. Sin., 2013,71(4):508-518.  

    26. [26]

      Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012,11(1):19-29. doi: 10.1038/nmat3191

    27. [27]

      Yeon J S, Park S H, Suk J D, Lee H, Park H S. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chem. Eng. J., 2020,382122946. doi: 10.1016/j.cej.2019.122946

    28. [28]

      Xu H F, Hu R M, Zhang Y Z, Yan H B, Zhu Q, Shang J X, Yang S B, Li B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries[J]. Energy Storage Mater., 2021,43:212-220. doi: 10.1016/j.ensm.2021.09.003

    29. [29]

      Hua W X, Li H, Pei C, Xia J Y, Sun Y F, Zhang C, Lv W, Tao Y, Jiao Y, Zhang B S, Qiao S Z, Wan Y, Yang Q H. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries[J]. Adv. Mater., 2021,33(38)2101006. doi: 10.1002/adma.202101006

    30. [30]

      Pendashteh A, Vilela S M F, Krivtsov I, Avila-Brande D, Palma J, Horcajada P, Marcilla R. Bimetal zeolitic imidazolate framework (ZIF-9) derived nitrogen-doped porous carbon as efficient oxygen electrocatalysts for rechargeable Zn-air batteries[J]. J. Power Sources, 2019,427:299-308. doi: 10.1016/j.jpowsour.2019.04.074

    31. [31]

      Yan S S, Ouyang S X, Xu H, Zhao M, Zhang X L, Ye J H. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity[J]. J. Mater. Chem. A, 2016,4(39):15126-15133. doi: 10.1039/C6TA04620G

    32. [32]

      Ma X T, Yang H Z, Li Y, Zhou X X, Zhang Z L, Duan D H, Hao X G, Liu S B. Deciphering the intrinsic kinetics of liquid lithium polysulfides redox process in ether-based flowing electrolyte for Li-S batteries[J]. Chem. Eng. J., 2022,427131586. doi: 10.1016/j.cej.2021.131586

    33. [33]

      Yang H Z, Ma X T, Li Y, Zhou X X, Chen L, Zhang Z L, Duan D H, Hao X G, Liu S B. Electrochemical redox kinetic behavior of S8 and Na2Sn (n=2, 4, 6, 8) on vulcan XC-72R carbon in a flowing-electrolyte system[J]. J. Power Sources, 2020,478229074. doi: 10.1016/j.jpowsour.2020.229074

    34. [34]

      Gu X, Zhang L, Zhang W C, Liu S L, Wen S, Mao X N, Dai P C, Li L J, Liu D D, Zhao X B, Guo Z P. A CoSe-C@C core-shell structure with stable potassium storage performance realized by an effective solid electrolyte interphase layer[J]. J. Mater. Chem. A, 2021,9(18):11397-11404. doi: 10.1039/D1TA01107C

    35. [35]

      Xing W, Du D F, Cai T H, Li X C, Zhou J, Chai Y M, Xue Q Z, Yan Z F. Carbon-encapsulated CoSe nanoparticles derived from metalorganic frameworks as advanced cathode material for Al-ion battery[J]. J. Power Sources, 2018,401:6-12. doi: 10.1016/j.jpowsour.2018.08.079

    36. [36]

      Pang Q, Kwok C Y, Kundu D P, Liang X, Nazar L F. Lightweight metallic MgB2 mediates polysulfide redox and promises high-energydensity lithium-sulfur batteries[J]. Joule, 2019,3(1):136-148. doi: 10.1016/j.joule.2018.09.024

    37. [37]

      Peng H J, Zhang G, Chen X, Zhang Z W, Xu W T, Huang J Q, Zhang Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2016,55(42):12990-12995. doi: 10.1002/anie.201605676

    38. [38]

      Carter R, Ejorh D, Share K, Cohn A P, Douglas A, Muralidharan N, Tovar T M, Pint C L. Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium sulfur batteries[J]. J. Power Sources, 2016,330:70-77. doi: 10.1016/j.jpowsour.2016.08.128

    39. [39]

      Chu R R, Nguyen T T, Bai Y Q, Kim N H, Lee J H. Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium-sulfur batteries[J]. Adv. Energy Mater., 2022,12(9)2102805. doi: 10.1002/aenm.202102805

    40. [40]

      Liu J B, Lin C J, Xie Q S, Peng D L, Xie R J. Core-shell zeolite imidazole framework-derived ZnSe@CoSe2/C heterostructure enabling robust polysulfide adsorption and rapid Li+ diffusion in high-rate and high-loading lithium-sulfur batteries[J]. Chem. Eng. J., 2022,430133099. doi: 10.1016/j.cej.2021.133099

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(14)
  • Abstract views(1097)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return