Citation: Jun-Qing WEN, Fan YU, Qiu-Sheng SHI, Yang YANG, Hua WU, Xia FENG, Jian-Min ZHANG, Yu-Shun HAN. Electronic structures and magnetic properties of ZnO nanoribbons with armchair edges passivated by nitrogen under electric field and strains[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 211-220. doi: 10.11862/CJIC.2022.285 shu

Electronic structures and magnetic properties of ZnO nanoribbons with armchair edges passivated by nitrogen under electric field and strains

  • Corresponding author: Jun-Qing WEN, jqwen1221@xsyu.edu.cn
  • Received Date: 3 June 2022
    Revised Date: 25 November 2022

Figures(10)

  • The electronic and magnetic properties of nitrogen - passivated ZnO nanoribbons with armchair edges (NA8-ZnONRs) under electric field and strains were studied by density functional theory (DFT) at LDA+U level. Through the detailed calculation of the structures, electronic structures, and magnetism of the system, the results show that the pure ZnO nanoribbons with armchair edges (A8-ZnONRs) are a non-magnetic P-type semiconductor. NA8-ZnONRs have ferromagnetic metal characteristics. Its magnetism mainly comes from the spin polarization of N2p orbit (2.56μB) and O2p orbit (0.69μB), and the total magnetic moment is 3.21μB. NA8-ZnONRs system has a strong response to X - axis electric field. By adjusting the amplitude of the X - axis electric field, the magnetic moments of the system can be effectively adjusted. Under the action of X-axis electric field, the system still has fer- romagnetic metallicity, and the magnetism mainly comes from the spin polarization of N2p orbit and O2p orbit. After applying X-axis strains, the system still has ferromagnetic metallicity. Compared with the intrinsic magnetic moment of NA8-ZnONRs nanoribbons, the total magnetic moments of the system increase significantly, indicating that the system has an obvious corresponding effect on the strains. With the adjustment of strain amplitude, the change of total magnetic moment is flat. The results show that the application of strains can effectively adjust the magnetic moments of the system. However, the corresponding magnetic moments of the system to the strains change is not obvious in a small strain range.
  • 加载中
    1. [1]

      Tabassum S, Yamasue E, Okumura H, Ishihara K N. Electrical stability of Al- doped ZnO transparent electrode prepared by sol- gel method[J]. Appl. Surf. Sci., 2016,377:355-361. doi: 10.1016/j.apsusc.2016.03.133

    2. [2]

      QUAN W L, ZHANG J M, SHEN J H, LI L C, LI J J. Hierarchical ZnO: Architecture, morphological control and photocatalytic activity[J]. Chinese J. Inorg. Chem., 2015,31(8):1626-1636.  

    3. [3]

      Khuili M, Fazouan N, Makarim H A, Halani G, Atmani E H. Compara- tive first principles study of ZnO doped with group Ⅲ elements[J]. J. Alloy. Compd., 2016,688:368-373.

    4. [4]

      WEN H, SHI C D, HU Y, RONG H R, SHA Y Y, LIU H J, ZHANG H P, LIU Q. Two dimensional coordination polymer derived nitrogen - doped carbon/ZnO nanocomposites as high performance anode material of lithium-Ion batteries[J]. Chinese J. Inorg. Chem., 2019,35(1):50-58.  

    5. [5]

      Aravindh S A, Schwingenschloegl U, Roqan I S. Ferromagnetism in Gd doped ZnO nanowires: A first principles study[J]. J. Appl. Phys., 2014,116(23)233906. doi: 10.1063/1.4904860

    6. [6]

      Lin H, Lin C F, Zhuang D T, Li X X, Li J B. Low temperature prepara- tion of perpendicularly oriented ZnO nanosheet films and application to dye-sensitised solar cells[J]. Int. J. Mater. Prod. Technol., 2010,37(3/4):305-311. doi: 10.1504/IJMPT.2010.031430

    7. [7]

      Chen Y, Shao Y, Zhang X H, Jia C, Su Y, Li Q, Liu L Z, Guo T B. Heavily doped ZnO nanobelts and their violet emission[J]. J. Nanosci. Nanotechnol., 2011,11(2):1205-1209. doi: 10.1166/jnn.2011.3086

    8. [8]

      Wu L L, Gao Z G, Zhang E, Gao H, Li H, Zhang X. Synthesis and optical properties of N-In Co-doped ZnO nanobelts[J]. J. Lumin., 2010,130(2):334-340. doi: 10.1016/j.jlumin.2009.09.013

    9. [9]

      Zang C H, Su J F, Zhang D M, Zhang Y S. Photoluminescence of ZnO: Sb nanobelts fabricated by thermal evaporation method[J]. J. Lumin., 2011,131(8):1817-1811. doi: 10.1016/j.jlumin.2011.03.040

    10. [10]

      Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S. First - principles study of zinc oxide honeycomb structures[J]. Phys. Rev. B, 2009,80(23)235119. doi: 10.1103/PhysRevB.80.235119

    11. [11]

      Botello-Mendez A R, Martinez-Martinez M T, Lopez-Urias F, Terrones M, Terrones H. Metallic edges in zinc oxide nanoribbons[J]. Chem. Phys. Lett., 2007,448(4/5/6):258-263.

    12. [12]

      Kou L Z, Li C, Zhang Z H, Guo W L. Electric-field and hydrogen- passivation - induced band modulations in armchair ZnO nanorib-bons[J]. Phys. Chem. C, 2010,114(2):1326-1331. doi: 10.1021/jp909584j

    13. [13]

      Botello-Méndez A R, López-Ur F, Terrones M, Terrones H. Magnetic behavior in zinc oxide zigzag nanoribbons[J]. Nano lett., 2008,8(6):1562-1565. doi: 10.1021/nl072511q

    14. [14]

      Wu M H, Wu X, Zeng X C. Exploration of half metallicity in edge-modified graphene nanoribbons[J]. J. Phys. Chem. C, 2010,114(9):3937-3943. doi: 10.1021/jp100027w

    15. [15]

      Yang X, Dou X, Rouhanipous A, Zhi L, Räder H J, Mullen K. Two-dimensional graphene nanoribbons[J]. J. Am. Chem. Soc., 2008,130(13):4216-4217. doi: 10.1021/ja710234t

    16. [16]

      Johnson J L, Behnam A, Pearton S J, Ural A. Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks[J]. Adv. Mater., 2010,22(43):4877-4882. doi: 10.1002/adma.201001798

    17. [17]

      Shahrokhi M. Tuning the band gap and optical spectra of monolayer penta-graphene under in-plane biaxial strains[J]. Optik, 2017,136:205-209. doi: 10.1016/j.ijleo.2017.02.033

    18. [18]

      Geim A K, Grigorieva I V. Van der waals heterostructures[J]. Nature, 2013,499(7459):419-424. doi: 10.1038/nature12385

    19. [19]

      Shahrokhi M. Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure[J]. Appl. Surf. Sci., 2016,390:377-382. doi: 10.1016/j.apsusc.2016.08.055

    20. [20]

      All Abbas J M, Narin P, Kutlu E, Lisesivdin S B, Ozbay E. Electronic properties of zigzag ZnO nanoribbons with hydrogen and magnesium passivation[J]. Physica B, 2019,556:12-17. doi: 10.1016/j.physb.2018.12.003

    21. [21]

      Tit N, Othman W, Shaheen A, Ali M. High selectivity of N- doped ZnO nano-ribbons in detecting H2, O2 and CO2 molecules: Effect of negative - differential resistance on gas - sensing[J]. Sens. Actuators B - Chem., 2018,270:167-172. doi: 10.1016/j.snb.2018.04.175

    22. [22]

      Shaheen A, Ali M, Othman W, Tit N. Origins of negative differential resistance in N-doped ZnO nanoribbons: Ab-initio investigation[J]. Sci. Rep., 2019,9:9914-9920. doi: 10.1038/s41598-019-46335-0

    23. [23]

      Shaheen A, Othman W, Ali M, Tit N. Catalyst-induced gas-sensing selectivity in ZnO nanoribbons: Ab - initio investigation at room temperature[J]. Appl. Surf. Sci., 2020,505144602. doi: 10.1016/j.apsusc.2019.144602

    24. [24]

      Paliwal A, Sharma A, Tomar M, Gupta V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films[J]. Sens. Actuators B-Chem., 2017,250:679-685. doi: 10.1016/j.snb.2017.05.064

    25. [25]

      Bhati V S, Ranwa S, Rajamani S, Kumari K. Improved sensitivity with low limit of detection of a hydrogen gas sensor based on GO- loaded Ni - doped ZnO nanostructures[J]. ACS Appl. Mater. Interfaces, 2018,10(13)11116. doi: 10.1021/acsami.7b17877

    26. [26]

      Wu M, Wu X, Pei Y, Zeng X C. Inorganic nanoribbons with unpas- sivated zigzag edges: Half metallicity and edge reconstruction[J]. Nano Res., 2011,4(2):233-239. doi: 10.1007/s12274-010-0074-9

    27. [27]

      Naderi S, Javaheri S, Shahrokhi M, Nia B A, Shahmoradi S. Optical properties of zigzag and armchair ZnO nanoribbons[J]. Physica E, 2020,124114218. doi: 10.1016/j.physe.2020.114218

    28. [28]

      Chen Q, Zhu L, Wang J. Edge-passivation induced half-metallicity of zigzag zinc oxide nanoribbons[J]. Appl. Phys. Lett., 2009,95(13)133116. doi: 10.1063/1.3238561

    29. [29]

      Kou L Z, Li C, Zhang Z H, Guo W. Tuning magnetism in zigzag ZnO nanoribbons by transverse electric fields[J]. ACS Nano, 2010,4(4):2124-2129. doi: 10.1021/nn901552b

    30. [30]

      Si H, Pan B C. Strain-induced semiconducting-metallic transition for ZnO zigzag nanoribbons[J]. J. Appl. Phys., 2010,107(9)094313. doi: 10.1063/1.3374684

    31. [31]

      Kilic M E, Erkoc S. Structural properties of defected ZnO nanorib- bons under uniaxial strain: Molecular dynamics simulations[J]. Curr. Appl. Phys., 2014,14(1):57-62. doi: 10.1016/j.cap.2013.10.009

    32. [32]

      Kresse G, Furthmüller J. Efficiency of ab-initio total energy calcula- tions for metals and semiconductors using a plane - wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-21. doi: 10.1016/0927-0256(96)00008-0

    33. [33]

      Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24)17953. doi: 10.1103/PhysRevB.50.17953

    34. [34]

      Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561. doi: 10.1103/PhysRevB.47.558

    35. [35]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169

    36. [36]

      Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758

    37. [37]

      Kausar H, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A. DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review[J]. Results Phys., 2020,16102829. doi: 10.1016/j.rinp.2019.102829

    38. [38]

      Wen J Q, Han Y S, Yang X, Zhang J M. Computational research of electronic, optical and magnetic properties of Ce and Nd co-doped ZnO[J]. J. Phys. Chem. Solids, 2019,125:90-95. doi: 10.1016/j.jpcs.2018.10.014

    39. [39]

      Wen J Q, Lin P, Han Y S, Li N, Chen G X, Bai L H, Guo S L, Wu H, He W L, Zhang J M. Insights into enhanced ferromagnetic activity of P doping graphene-ZnO monolayer with point defects[J]. Mater. Chem. Phys., 2021,270124855. doi: 10.1016/j.matchemphys.2021.124855

    40. [40]

      HAN Y S. Study on magnetic control and mechanism of ZnO nanoribbons under electro mechanical coupling[J]. Xi'an: Xi'an Shiyou University, 2021:23-34.  

    41. [41]

      Monkhorst H J, Pack J D. Special points for brillouin-zone integra- tions[J]. Phys. Rev. B, 1976,13(12):5188-5193. doi: 10.1103/PhysRevB.13.5188

    42. [42]

      Rashed H A, Umran N M. The stability and electronic properties of Si-doped ZnO nanosheet: A DFT study[J]. Mater. Res. Express, 2019,6045044. doi: 10.1088/2053-1591/aaf91e

    43. [43]

      Guo H Y, Zhao Y, Lu N, Kan E, Zeng X C, Wu X J, Yang J L. Tunable magnetism in a nonmetal-substituted ZnO monolayer: A first- principles study[J]. J. Phys. Chem. C, 2012,116:11336-11342. doi: 10.1021/jp2125069

    44. [44]

      Tan C, Sun D, Xu D, Tian X, Huang Y. Tuning electronic structure and optical properties of ZnO monolayer by Cd doping[J]. Ceram. Int., 2016,42:10997-11002. doi: 10.1016/j.ceramint.2016.03.238

    45. [45]

      Park Y K, Ahmad U, Lee E W, Hong D W, Hahn Y. Single ZnO nano- belt based field effect transistors (FETs)[J]. J. Nanosci. Nanotechnol., 2019,9(10):45-50.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(4)
  • Abstract views(589)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return