Citation: Qiao-Wen CHANG, Zhu-An CHEN, Lu FENG, Wen JIANG, Cai-Xian YAN, Wei-Ping LIU, Fu-Quan BAI. Synthesis and photophysical properties of phenylquinoline iridium complexes controlled by electron-withdrawing groups[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 255-262. doi: 10.11862/CJIC.2022.283 shu

Synthesis and photophysical properties of phenylquinoline iridium complexes controlled by electron-withdrawing groups

Figures(5)

  • To study the effect of substituents on iridium phosphorescent complexes, fluorine, methoxy, or trifluoromethyl were introduced into positions 2 and 4 of phenyl at the same time to obtain 2, 4-disubstituted phenyl-4-methylquinoline (2, 4-2R-mpq). Three new iridium phosphorescent complexes (2, 4-2R-mpq)2Ir(tmd) (R=F (1), MeO (2), CF3 (3)) were synthesized by using 2, 2, 6, 6-tetramethylheptanedione (tmd) as the auxiliary ligand, and 2, 4-2R-mpq with the electron-withdrawing group as the main ligands. The compositions and chemical structures of the complexes were characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction. The three iridium complexes belong to the triclinic system with the P1 space group. The photophysical properties of the complexes were studied by UV - Vis absorption spectroscopy, photoluminescence spectroscopy, and theory calculation. The results indicate that complexes 1, 2, and 3 with the photoluminescence quantum yields of 96%, 80%, and 80% exhibited maximum emission peaks at 570, 582, and 604 nm, respectively. When F and MeO are introduced into the 2 and 4 positions of phenyl on the main ligand, the electron cloud of complexes 1 and 2 are aggregated, while the CF3 is introduced, and the electron cloud of the complex is dispersed. Compared with complex 3, the emission wavelengths of complexes 1 and 2 had a significant blue shift. Different from traditional cognition, the methoxyl group represents an electron-withdrawing group.
  • 加载中
    1. [1]

      Tsujimura T. OLED Displays: Fundamentals and Applications. Hoboken: John Wiley & Sons, Inc., 2012: 5-30

    2. [2]

      Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51(12):913-915. doi: 10.1063/1.98799

    3. [3]

      Reineke S, Linder F, Schwartz G, Seidler Nico, Walzer K, Lüssem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009,459(7244):234-238. doi: 10.1038/nature08003

    4. [4]

      YAO Y, XIAO J, TAN J F, WANG J, ZHU M, YIN Z Y, CAO L F. Improved performance with a hybrid cathodic interfacial layer in OLEDs[J]. Spectroscopy and Spectral Analysis, 2019,39(11):3383-3387.  

    5. [5]

      LIU Z W, BIAN Z Q, HUANG C H. The electroluminescence of metal complexes. Beijing: Science Press, 2019: 78-96

    6. [6]

      WANG Y, WEI C D, GE G P, WANG S, LIANG Y X. Synthesis, crystal structures and photophysical properties of ionic iridium(Ⅲ) pyrimidine complexes[J]. Chinese J. Inorg. Chem., 2018,34(2):346-352.  

    7. [7]

      LIAO H S, GAN J Y, XIA X, HU Y X, XIE D D, ZHANG D Y, LI X. Synthesis of fluorinated diphenylbenzimidazole iridium complexes based on different auxiliary ligands and solution-processed electroluminescent devices[J]. Chinese J. Inorg. Chem., 2022,38(3):399-406.  

    8. [8]

      CHEN M, WANG X M, HE Y H, YANG J, WANG S, TONG B H. Synthesis and electroluminescence properties of iridium complex based on trifluoroacetylphenyl quinolone ligand[J]. Chinese J. Inorg. Chem., 2015,31(12):2285-2290.  

    9. [9]

      ZHOU Y H, XU Q L, LIU C L, XU J J. Synthesis and opto-electronic property of three green iridium(Ⅲ) complexes[J]. Chinese J. Inorg. Chem., 2020,36(7):1267-1274.  

    10. [10]

      Ruben D C, Enrique O, Henk J B. Luminescent Ionic Transition-Metal Complexes for Light-Emitting Electrochemical Cells[J]. Angew. Chem. Int. Ed., 2012,51(33):8178-8211.

    11. [11]

      Fang K H, Wu L L, Huang Y T, Yang C H, Sun I W. Color tuning of iridium complexes-Part Ⅰ: Substituted phenylisoquinoline-based iridium complexes as the triplet emitter[J]. Inorg. Chim. Acta, 2006,359(2):441-450.

    12. [12]

      TAO P. Design, synthesis, and excited states tuning of highly efficient iridium (Ⅲ) complexes for applications in optoelectronics. Taiyuan: Taiyuan University of Technology, 2017: 41-79

    13. [13]

      Tao P, Li W L, Zhang J, Guo S, Zhao Q, Wang H, Wei B, Liu S J, Zhou X H, Yu Q, Xu B S, Huang W. Facile synthesis of highly efficient lepidine-based phosphorescent iridium(Ⅲ) complexes for yellow and white organic light-emitting diodes[J]. Adv. Funct. Mater., 2016,26(6):881-894.

    14. [14]

      Kim D H, Cho N S, Oh H Y, Yang J H, Jeon W S, Park J S, Min C S, Kwon J H. Highly efficient red phosphorescent dopants in organic light-emitting devices[J]. Adv. Mater., 2011,23(24):2721-2726.

    15. [15]

      Universal Display Corporation, Kwong R, Ma B, Xia C J, Alleyne B, Brooks J. Phosphorescent materials: WO2008/109824A2. 2008-09-12.

    16. [16]

      Zhuang J Y, Li W F, Su W M, Liu Y, Shen Q, Liao L S, Zhou M. Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium (Ⅲ) complex as a sky-blue dopant[J]. Org. Electron., 2013,14(10):2596-2601.

    17. [17]

      Hammett L P. The effect of structure upon the reactions of organic compounds[J]. Benzene derivatives. J. Am. Chem. Soc., 1937,59(1):96-103.

    18. [18]

      TIAN H R. Synthesis and electroluminescence properties of red phosphorescent iridium complex based on phenyquinazoline ligands. Dalian: Dalian University of Technology, 2021: 43-47

    19. [19]

      Yan Z M, Wang Y P, Ding J Q, Wang Y, Wang L X. Methoxyl modification in furo[3, 2-c]pyridine based iridium complexes towards highly efficient green-and orange-emitting electrophosphorescent devices[J]. J. Mater. Chem. C, 2017,5(46):12221-12227.

    20. [20]

      Tian H R, Liu D, Li J Y, Ma M Y, Lan Y, Wei W K, Niu R, Song K. Pure red phosphorescent iridium (Ⅲ) complexes containing phenylquinazoline ligands for highly efficient organic light-emitting diodes[J]. New J. Chem., 2021,45(25):11253-11260.

    21. [21]

      CHANG Q W, CHEN Z A, WANG Z A, JIANG J, YU J, LIU W P, YAN C X, CHEN L. Iridium phosphorescent complexes based on the modified phenylquinoline ligand and their high-efficiency pure red organic electroluminescent device[J]. Chinese Journal of Luminescence, 2022,43(10):1583-1591.  

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(2)
  • Abstract views(692)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return