Citation: Ting-Ying YANG, Dan GUO, Yu-Qiong HU, Si-Jia YI, Shu-Qi GU, Xia HE, Xiao-Ming ZHU, Fu-Xing ZHANG. Synthesis, structure, and properties of multinuclear Ca(Ⅱ) and binuclear Mn(Ⅱ) complexes assembled by 1, 10-phenanthroline and 1-naphthalic acid ligands[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 117-126. doi: 10.11862/CJIC.2022.282 shu

Synthesis, structure, and properties of multinuclear Ca(Ⅱ) and binuclear Mn(Ⅱ) complexes assembled by 1, 10-phenanthroline and 1-naphthalic acid ligands

Figures(7)

  • Two complexes [Ca(Phen)(Nap)2]n (1) and [Mn2(Phen)2(Nap)4(H2O)] (2) were synthesized by calcium acetate monohydrate or manganous acetate reacting with 1, 10-phenanthroline (Phen) and 1-naphthoic acid (HNap). Complexes 1 and 2 have been characterized by IR, elemental analysis, and thermogravimetry and the crystal structures have been determined by X-ray diffraction. Both the central calcium ion and the central manganese ion form a six-coordinated twisted octahedral structure. The excitation spectrum and emission spectrum of the two complexes were determined, and the results showed that the excitation and emission spectra of the complexes had a good mirror relationship, and the Stokes shift of complex 2 was greater than that of complex 1. In vitro antitumor activities of both complexes were evaluated by MTT against three human cancer cell lines, namely human lung cancer cells (NCI-H460), human breast cancer cells (MCF-7), human liver cancer cells (HepG2), and human normal cells (HL7702). It was found that complexes 1 and 2 showed a good inhibitory effect on the three cancer cells, compared to the normal cell. The interactions of the complexes with calf thymus DNA have been studied by UV and fluorescence spectroscopy, and the results show that the binding mode of complexes 1 and 2 with DNA may most likely bind in the groove of the DNA backbone by electrostatic action, and their intrinsic binding constants were 5.83×103 and 6.43×103 L·mol-1, respectively. Complex 1 showed no redshift, while complex 2 showed an obvious redshift of 2.0 nm. The subtractive effect, intrinsic binding constants, and the redshift data indicate that the interaction between complex 2 and DNA is greater than that between complex 1 and DNA.
  • 加载中
    1. [1]

      Jiang D N, Huang C, Zhu J, Wang P, Liu Z M, Fang D. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs)[J]. Coord. Chem. Rev., 2021,444214064. doi: 10.1016/j.ccr.2021.214064

    2. [2]

      Panicker R R, Sivaramakrishna A. Remarkably flexible 2, 2': 6', 2″-terpyridines and their group 8-10 transition metal complexes-Chemistry and applications[J]. Coord. Chem. Rev., 2022,459214426. doi: 10.1016/j.ccr.2022.214426

    3. [3]

      Reek J N H, Bruin B D, Pullen S, Mooibroek T J, Kluwer A M, Caumes X. Transition metal catalysis controlled by hydrogen bonding in the second coordination sphere[J]. Chem. Rev., 2022,122(14):12308-12369. doi: 10.1021/acs.chemrev.1c00862

    4. [4]

      Zhang J P, Zhang Y B, Lin J B, Chen X M. Metal azolate frameworks: From crystal engineering to functional materials[J]. Chem. Rev., 2012,112:1001-1033. doi: 10.1021/cr200139g

    5. [5]

      Liu W, Gust R. Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs[J]. Chem. Soc. Rev., 2013,42(2):755-773. doi: 10.1039/C2CS35314H

    6. [6]

      Rosenberg B, Vancamp L, Trosko J E, Mansour V H. Platinum compounds-A new class of potent antitumour agents[J]. Nature, 1969,222:385-386. doi: 10.1038/222385a0

    7. [7]

      Sherman S E, Lippard S J. Structural aspects of platinum anticancer drug interactions with DNA[J]. Chem. Rev., 1987,87:1153-1181. doi: 10.1021/cr00081a013

    8. [8]

      Marzilli L G, Ano S O, Intini F P, Natile G. New concepts relevant to cisplatin anticancer activity from unique spectral features providing evidence that adjacent guanines in d(GpG), intrastrand-cross-linked at N7 by a cis-platinum moiety, can adopt a head-to-tail arrangement[J]. J. Am. Chem. Soc., 1999,121:9133-9142. doi: 10.1021/ja9916409

    9. [9]

      Howerton B S, Heidary D K, Glazer E C. Strained ruthenium complexes are potent light -activated anticancer agents[J]. J. Am. Chem. Soc., 2012,134(20):8324-8327. doi: 10.1021/ja3009677

    10. [10]

      Devi J, Kumar B, Taxak B. Recent advancements of organotin(Ⅳ) complexes derived from hydrazone and thiosemicarbazone ligands as potential anticancer agents[J]. Inorg. Chem. Commun., 2022,139109208. doi: 10.1016/j.inoche.2022.109208

    11. [11]

      LIU X, ZHANG F X, HE L F, LI D W, ZENG W H, JIANG S Y, HE X, SHENG L B, ZHU X M. Synthesis, structure and antitumor activity of two tris(o-bromobenzyl)tin carboxylates[J]. Chinese J. Inorg. Chem., 2022,38(1):46-52.  

    12. [12]

      Kaczmarek M T, Zabiszak M, Nowak M, Jastrzab R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity[J]. Coord. Chem. Rev., 2018,370:42-54. doi: 10.1016/j.ccr.2018.05.012

    13. [13]

      Hernández-Romero D, Rosete-Luna S, López-Monteon A, Chávez-Piña A, Pérez-Hernández N, Marroquín-Flores J, Cruz-Navarro A, Pesado-Gómez G, Morales-Morales D, Colorado-Peralta R. First-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumor activity[J]. Coord. Chem. Rev., 2021,439213930. doi: 10.1016/j.ccr.2021.213930

    14. [14]

      Nitiss J L. A copper connection to the uptake of platinum anticancer drugs[J]. Proc. Natl. Acad. Sci. U. S. A., 2002,99(22):13963-13965. doi: 10.1073/pnas.232574299

    15. [15]

      Klein A V, Hambley T W. Platinum drug distribution in cancer cells and tumors[J]. Chem. Rev., 2009,109:4911-4920. doi: 10.1021/cr9001066

    16. [16]

      Burger A M, Double J A, Newell D R. Inhibition of telomerase activity by cisplatin in human testicular cancer cells[J]. Eur. J. Cancer, 1997,33(4):638-644. doi: 10.1016/S0959-8049(96)00521-7

    17. [17]

      HUANG C X, GU J, XIONG W M, CHEN J Z, NIE X L, SHANGGUAN X C. Synthesis, crystal structures and antibacterial activities of two complexes of Zn(Ⅱ)/Cd(Ⅱ) assembled by 4-carboxy-methoxycinnamic acid ligand[J]. Chinese J. Inorg. Chem., 2021,37(7):1197-1203.  

    18. [18]

      XU Y Z, SHEN J B, ZHAO G L, HU W J. Syntheses, crystal structures and DNA-binding of two manganese complexes[J]. Chinese J. Inorg. Chem., 2022,38(2):285-294.  

    19. [19]

      ZHU X M, FENG Y L, ZHANG F X, YU J X, JIANG W J, OU Y P, KUANG D Z. Synthesis, crystal structure and properties of dinuclear copper complex {[Cu(Phen)(Nap) 2]2·(EtOH)2·(H2O)} (Phen=1, 10-phenanthroline; Nap=1-naphthoic acid; EtOH=ethyl alcohol)[J]. Chinese Journal of Applied Chemistry, 2016,33(8):932-938.  

    20. [20]

      ZHANG C L, WANG J, LI J Y, YU X K, YANG J Y, CAI J H, LI Y Z, WANG H Y, GONG R Q. Synthesis of 1, 2, 4-triazine-phenanthroline Co(Ⅲ) complexes and their fluorescence recognition on calf thymus DNA[J]. Chinese Journal of Applied Chemistry, 2019,36(2):212-222.  

    21. [21]

      LIU Y C, CHEN Z F, LIANG H. Progress in research on pharmacological activities of calcium(Ⅱ) complexes of biorelevant ligands[J]. Progress in Pharmaceutical Sciences, 2020,44(4):269-279.  

    22. [22]

      Smith M R, Fernandes J, Go Y M, Jones D P. Redox dynamics of manganese as a mitochondrial life -death switch[J]. Biochem. Biophys. Res. Commun., 2017,482:388-398.

    23. [23]

      Gunter T E, Gerstner B, Lester T, Wojtovich A P, Malecki J, Swarts S G, Brookes P S, Gavin C E, Gunter K K. An analysis of the effects of Mn2+ on oxidative phosphorylation in the liver, brain, and heart mitochondria using state 3 oxidation rate assays[J]. Toxicol. Appl. Pharmacol., 2010,249:65-75.

    24. [24]

      WENG S F. Fourier transform infrared spectroscopy analysis. 2nd ed. Beijing: Chemical Industry Press, 2005: 305-306

    25. [25]

      YANG S P, HAN L J, PAN Y, WU Z Y, HE X R, CHEN L J. Synthesis, crystal structure and antibacterial activity of a bismuth(Ⅲ) complex[Bi2(PPA)6·(Phen)2] with phenylacetic acid and 1, 10-phenanthroline[J]. Acta Chim. Sinica, 2012,70(4):519-524.  

    26. [26]

      Lavis L D, Raines R T. Bright building blocks for chemical biology[J]. ACS Chem. Biol., 2014,9(4):855-866.

    27. [27]

      Ren T B, Wang X, Zhang W, Zhang X X, Wang Z Y, Xiang Z, Yuan L, Zhang X B. A general method to increase Stokes shift by introducing alternating vibronic structures[J]. J. Am. Chem. Soc., 2018,140:7716-7722.

    28. [28]

      LIU Y M, LI G Z, ZHANG H, LI Y J. Study on the fluorescence of ligustrazine hydrochloride and its application[J]. Chinese Journal of Spectroscopy Laboratory, 2001,18(4):536-538.  

    29. [29]

      CHEN L, DENG X, TAN Y X, ZHANG F X, KUANG D Z, JIANG W J. Synthesis, anti-tumor activity, and interaction with DNA of two substituted benzyltin complexes[J]. Chinese J. Inorg. Chem., 2022,38(6):1081-1089.  

    30. [30]

      XU J G, WANG Z B. Fluorescence analysis. 3rd ed. Beijing: Science Press, 2006: 64-70

    31. [31]

      JIANG W J, TAN Y X, YU J X, ZHU X M, ZHANG F X, KUANG D Z. Syntheses, crystal structures and biological activity of 2-oxo-3-phenylpropionic acid aroyl hydrazone di-2, 4-dichlorobenzyltin complexes[J]. Chinese J. Inorg. Chem., 2016,32(8):1383-1390.  

    32. [32]

      DU F Y, LIN Q Y, QI Q Y, WEI Q, YANG L F, LIN Y P. Synthesis, structures and biological activity of transition-metal complexes with 2-substituted (The original is substitued) imidazole and demethyleantharic acid[J]. Sci. China-Chem., 2015,45(10):1050-1064.  

    33. [33]

      Bielawski K, Wolczynski S, Bielawska A. DNA-binding activity and cytotoxicity of the extended diphenylfuran bisamidines in breast cancer MCF-7 Cells[J]. Biol. Pharm. Bull., 2001,24(6):704-706.

    34. [34]

      BAO F F, XU X X, ZHOU W, PANG C Y, XI S F, GU Z G, LI Z J. Synthesis, structures and DNA -binding of enantiomers of Fe(Ⅱ) and Ni(Ⅱ) Schiff base complexes[J]. Chinese J. Inorg. Chem., 2014,30(8):1748-1756.  

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

Metrics
  • PDF Downloads(3)
  • Abstract views(970)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return