Citation: Long-Long MA, Li-Bo QIN, Ya-Yang TIAN, Li QIN, Zhi YANG, Chao YANG. Preparation and visible-light photocatalytic properties of PO43- doped Bi2O2CO3/Bi0[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 98-108. doi: 10.11862/CJIC.2022.281 shu

Preparation and visible-light photocatalytic properties of PO43- doped Bi2O2CO3/Bi0

Figures(9)

  • Oxygen vacancies construction and metallic Bi0 loading were proven effective ways for enhancing the light absorption performance of semiconductor materials and promoting the separation of photogenerated carriers. In this work, metal Bi (Bi0) decorated PO43- doped Bi2O2CO3 (BOC) nanocomposites (Bi-P-BOC) was successfully prepared through a simple co-precipitation method with a subsequent thermal reduction process, and its photocatalytic degradation mechanism of ofloxacin (OFX) under visible light irradiation was studied. The result demonstrated that PO43- was uniformly doped in BOC, which showed increased visible light response range, increased surface defects, and enlarged specific surface area. Through the thermal reduction process, a number of oxygen vacancies were produced as well as the loading of Bi0 on the surface of BOC. Bi-P-BOC was able to degrade 85% of the OFX in 180 min under visible light with a degradation rate of 0.013 0 min-1, which was about eight times than pristine BOC and about two times than P-BOC-6. The UV-visible diffuse reflectance spectroscopy spectrum showed the enhanced visible light absorption attribute to the surface plasmon resonance effect of Bi0. The improved separation of the photoinduced electron and hole pairs were confirmed by the photoluminescence spectrum. Thus, the enhanced photocatalysis performance of Bi-P-BOC may mainly be benefited from its increased visible light response range and improved separation of the photoinduced electron and hole pairs. Furthermore, h+ was detected to be the main reactive oxygen species (ROS) species for the degradation of OFX in this system, 1O2 and ·O2- also made contributions to the degradation.
  • 加载中
    1. [1]

      Fatta-Kassinos D, Vasquez M I, Kümmerer K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes-degradation, elucidation of byproducts and assessment of their biological potency[J]. Chemosphere, 2011,85(5):693-709. doi: 10.1016/j.chemosphere.2011.06.082

    2. [2]

      He K, Soares A D, Adejumo H, McDiarmid M, Squibb K, Blaney L. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water[J]. J. Pharm. Biomed. Anal., 2015,106:136-143. doi: 10.1016/j.jpba.2014.11.020

    3. [3]

      Radjenović J, Petrović M, Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment[J]. Water Res., 2009,43(3):831-841. doi: 10.1016/j.watres.2008.11.043

    4. [4]

      Volmer D A, Mansoori B, Locke S J. Study of 4-quinolone antibiotics in biological samples by short-column liquid chromatography coupled with electrospray ionization tandem mass spectrometry[J]. Anal. Chem., 1997,69(20):4143-4155. doi: 10.1021/ac970425c

    5. [5]

      Huang H W, Xiao K, Dong F, Wang J J, Du X, Zhang Y H. Sulfurdoping synchronously ameliorating band energy structure and charge separation achieving decent visible-light photocatalysis of Bi2O2CO3[J]. RSC Adv., 2016,6(97):94361-94364. doi: 10.1039/C6RA04888A

    6. [6]

      Zhou Y, Zhao Z Y, Wang F, Cao K, Doronkin D E, Dong F, Grunwaldt J D. Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies[J]. J. Hazard. Mater., 2016,307:163-172. doi: 10.1016/j.jhazmat.2015.12.072

    7. [7]

      Zai J T, Cao F L, Liang N, Yu K, Tian Y, Sun H, Qian X F. Rose-like I-doped Bi2O2CO3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance[J]. J. Hazard. Mater., 2017,321:464-472. doi: 10.1016/j.jhazmat.2016.09.034

    8. [8]

      Wang R, Li X W, Cui W, Zhang Y X, Dong F. In situ growth of Au nanoparticles on 3D Bi2O2CO3 for surface plasmon enhanced visible light photocatalysis[J]. New J. Chem., 2015,39(11):8446-8453. doi: 10.1039/C5NJ01882J

    9. [9]

      Hou J G, Cao S Y, Wu Y Z, Liang F, Sun Y F, Lin Z S, Sun L C. Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction[J]. Nano Energy, 2017,32:359-366. doi: 10.1016/j.nanoen.2016.12.054

    10. [10]

      Chen L, Yin S F, Luo S L, Huang R, Zhang Q, Hong T, Au P C T. Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater[J]. Ind. Eng. Chem. Res., 2012,51(19):6760-6768. doi: 10.1021/ie300567y

    11. [11]

      Jo W J, Jang J W, Kong K J, Kang H J, Kim J Y, Jun H C, Parmar K P S, Lee J S. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity[J]. Angew. Chem. Int. Ed., 2012,51(13):3147-3151. doi: 10.1002/anie.201108276

    12. [12]

      Li C M, Chen G, Sun J X, Rao J C, Han Z H, Hu Y D, Xing W N, Zhang C M. Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water[J]. Appl. Catal. B-Environ., 2016,188:39-47. doi: 10.1016/j.apcatb.2016.01.054

    13. [13]

      Huang H W, Li X W, Wang J J, Dong F, Chu P K, Zhang T R, Zhang Y H. Anionic group self-doping as a promising strategy: Band-gap engineering and multi-functional applications of high-performance CO32--doped Bi2O2CO3[J]. ACS Catal., 2015,5(7):4094-4103. doi: 10.1021/acscatal.5b00444

    14. [14]

      Sun D F, Huang L, Li L, Yu Y, Du G H, Xu B S. Plasma enhanced Bi/Bi2O2CO3 heterojunction photocatalyst via a novel in-situ method[J]. J. Colloid Interface Sci., 2020,571:80-89. doi: 10.1016/j.jcis.2020.03.021

    15. [15]

      Zhao Z Y, Zhou Y, Wang F, Zhang K H, Yu S, Cao K. Polyanilinedecorated {001}facets of Bi2O2CO3 nanosheets: In situ oxygen vacancy formation and enhanced visible light photocatalytic activity[J]. ACS Appl. Mater. Interfaces, 2015,7(1):730-737. doi: 10.1021/am507089x

    16. [16]

      Zhang L L, Hu C, Ji H H. p-AgI anchored on{001}facets of n-Bi2O2CO3 sheets with enhanced photocatalytic activity and stability[J]. Appl. Catal. B-Environ., 2017,205:34-41. doi: 10.1016/j.apcatb.2016.12.015

    17. [17]

      Yu J H, Wei B, Zhu L, Gao H, Sun W J, Xu L L. Flowerlike C-doped BiOCl nanostructures: Facile wet chemical fabrication and enhanced UV photocatalytic properties[J]. Appl. Surf. Sci., 2013,284:497-502. doi: 10.1016/j.apsusc.2013.07.124

    18. [18]

      Xiong T, Huang H W, Sun Y J, Dong F. In situ synthesis of a Cdoped (BiO)2CO3 hierarchical self-assembly effectively promoting visible light photocatalysis[J]. J. Mater. Chem. A, 2015,3(11):6118-6127. doi: 10.1039/C5TA00103J

    19. [19]

      Wang P F, Xu L Y, Ao Y H, Wang C. In-situ growth of Au and β-Bi2O3 nanoparticles on flower-like Bi2O2CO3: A multi-heterojunction photocatalyst with enhanced visible light responsive photocatalytic activity[J]. J. Colloid Interface Sci., 2017,495:122-129. doi: 10.1016/j.jcis.2017.02.003

    20. [20]

      Liu H J, Chen P, Yuan X Y, Zhang Y X, Huang H W, Wang L A, Dong F. Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets[J]. Chin. J. Catal., 2019,40(5):620-630. doi: 10.1016/S1872-2067(19)63279-1

    21. [21]

      Li X W, Sun Y J, Xiong T, Jiang G M, Zhang Y X, Wu Z B, Dong F. Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis[J]. J. Catal., 2017,352:102-112. doi: 10.1016/j.jcat.2017.04.025

    22. [22]

      Dong F, Li Q Y, Sun Y J, Ho W K. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis[J]. ACS Catal., 2014,4(12):4341-4350. doi: 10.1021/cs501038q

    23. [23]

      Gao E P, Wang W Z. Role of graphene on the surface chemical reactions of BiPO4-rGO with low OH-related defects[J]. Nanoscale, 2013,5(22):11248-11256. doi: 10.1039/c3nr03370h

    24. [24]

      Pan C S, Xu J, Chen Y, Zhu Y F. Influence of OH-related defects on the performances of BiPO4 photocatalyst for the degradation of rhodamine B[J]. Appl. Catal. B-Environ., 2012,115 - 116:314-319. doi: 10.1016/j.apcatb.2011.12.030

    25. [25]

      Ma L L, Yang C, Tian X K, Nie Y L, Zhou Z X, Li Y. Enhanced usage of visible light by BiSex for photocatalytic degradation of methylene blue in water via the tunable band gap and energy band position[J]. J. Cleaner Prod., 2018,171:538-547. doi: 10.1016/j.jclepro.2017.10.058

    26. [26]

      Long M C, Cai W M, Cai J, Zhou B X, Chai X Y, Wu Y H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. J. Phys. Chem. B, 2006,110(41):20211-20216. doi: 10.1021/jp063441z

    27. [27]

      Zhang Y, Li J H, Bai J, Li L S, Xia L G, Chen S, Zhou B X. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode[J]. Water Res., 2017,125:259-269. doi: 10.1016/j.watres.2017.08.054

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    11. [11]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    12. [12]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(9)
  • Abstract views(891)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return