Citation: Zong-Yi HUANG, Yi-Fan ZHENG, E YANG, Xu-Chun SONG. Preparation and photocatalytic performance of BiOIO3/BiOCl heterojunction with dominated facet[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 263-271. doi: 10.11862/CJIC.2022.279 shu

Preparation and photocatalytic performance of BiOIO3/BiOCl heterojunction with dominated facet

  • Corresponding author: Xu-Chun SONG, songxuchunfj@163.com
  • Received Date: 17 July 2022
    Revised Date: 24 October 2022

Figures(9)

  • The BiOIO3/BiOCl heterojunctions with different dominated facet, BiOIO3/{110}BiOCl and BiOIO3/{001} BiOCl, were prepared through facile solvothermal/hydrothermal methods with ethylene glycol/deionized water as solvents. As - prepared BiOIO3/BiOCl photocatalysts were characterized by X - ray diffraction, scanning electron microscope, energy-dispersive spectroscopy, and UV-Vis diffuse reflectance spectra. The photocatalytic activity of BiOIO3/BiOCl heterojunctions was evaluated by photo - catalytically decomposing rhodamine B and phenol in an aqueous solution under visible light irradiation. The results showed that 25% BiOIO3/{110}BiOCl heterojunctions exhibited the highest photocatalytic efficiency. The degradation of RhB over 25% BiOIO3/{110}BiOCl was 98.7% after 15 min of light irradiation. And 100% phenol can be degraded after irradiation for 150 min. The better photocatalytic performance of BiOIO3/{110}BiOCl may be attributed to the strong absorption of the visible light, the het- erojunction structure, and the efficient separation of photo-generated carriers benefiting from the dominated (110) facet of BiOCl. The superoxide radicals (·O2-) and holes (h+) are the main active species in the photocatalytic process. Moreover, a reasonable mechanism for enhanced photocatalytic performance was also discussed based on theexperimental results.
  • 加载中
    1. [1]

      XU S C, ZHU T Z, QIAO Y, BAI X J, TANG N, ZHENG C M. Fabrication of Z - scheme BiVO4/GO/g - C3N4 photocatalyst with efficient visible-light photocatalytic performance[J]. J. Inorg. Mater., 2020,35(7):839-846.

    2. [2]

      ZHU M F, LI Z Q, LIAO C X, CHEN A P, LI C Z. Application in formaldehyde purification in air of flower spherical Bi2S3/BiOI composite photocatalyst[J]. Chinese J. Inorg. Chem., 2021,37(3):437-442.  

    3. [3]

      Xu Y Q, Hu X L, Zhu H K, Zhang J B. Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities[J]. J. Mater. Sci., 2016,51(9):4342-4348. doi: 10.1007/s10853-016-9745-6

    4. [4]

      Yang W J, Wen Y W, Zeng D W, Wang Q B, Chen R, Wang W C, Shan B. Interfacial charge transfer and enhanced photocatalytic performance for the heterojunction WO3/BiOCl: First-principles study[J]. J. Mater. Chem. A, 2014,2(48):20770-20775. doi: 10.1039/C4TA04327H

    5. [5]

      Cao C H, Xiao L, Chen C H, Cao Q H. Synthesis of novel Cu2O/BiOCl heterojunction nanocomposites and their enhanced photocatalytic activity under visible light[J]. Appl. Surf. Sci., 2015,357:1171-1179. doi: 10.1016/j.apsusc.2015.09.121

    6. [6]

      Zhang Q J, Fu Y, Wu Y F, Zhang Y N, Zuo T Y. Low-cost Y-doped TiO2 nanosheets film with highly reactive {001} facets from CRT waste and enhanced photocatalytic removal of Cr and methyl orange[J]. ACS Sustain. Chem. Eng., 2016,4(3):1794-1803. doi: 10.1021/acssuschemeng.5b01783

    7. [7]

      Chen M L, Yu S, Zhang X J, Wang F, Lin Y H, Zhou Y. Insights into the photosensitivity of BiOCl nanoplates with exposing {001} facets: The role of oxygen vacancy[J]. Superlattices Microstruct., 2016,89:275-281. doi: 10.1016/j.spmi.2015.11.018

    8. [8]

      Wang W K, Chen J J, Li W W, Pei D N, Zhang X, Yu H Q. Synthesis of Pt - loaded self - interspersed anatase TiO2 with a large fraction of (1) facets for efficient photocatalytic nitrobenzene degradation[J]. ACS. Appl. Mater. Interfaces, 2015,7(36):20349-20359. doi: 10.1021/acsami.5b06161

    9. [9]

      Hu X L, Xu Y Q, Zhu H K, Hua F N, Zhu S F. Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed {001} facets[J]. Mater. Sci. Semicond. Process, 2016,41:12-16. doi: 10.1016/j.mssp.2015.08.016

    10. [10]

      Pan M L, Zhang H J, Gao G D, Liu L, Chen W. Facet - dependent catalytic activity of nanosheet - assembled bismuth oxyiodide microspheres in degradation of bisphenol A[J]. Environ. Sci. Technol., 2015,49(10):6240-6248. doi: 10.1021/acs.est.5b00626

    11. [11]

      Wang W J, Huang B B, Ma X C, Wang Z Y, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Efficient separation of photogenerated electron hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates[J]. Chem.-Eur. J., 2013,19(44):14777-14780. doi: 10.1002/chem.201302884

    12. [12]

      Chen L, Yin S F, Luo S L, Huang R, Zhang Q, Hong T, Au P C T. Bi2 O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible - light treatment of dye - containing wastewater[J]. Ind. Eng. Chem. Res., 2012,51(19):6760-6768. doi: 10.1021/ie300567y

    13. [13]

      Xiong T, Dong F, Zhou Y, Fu M, Ho W K. New insights into how RGO influences the photocatalytic performance of BiOIO3/RGO nanocomposites under visible and UV irradiation[J]. J. Colloid Interface Sci., 2015,447:16-24. doi: 10.1016/j.jcis.2015.01.068

    14. [14]

      Wang W J, Cheng H F, Huang B B, Liu X L, Qin X Y, Zhang X Y, Dai Y. Hydrothermal synthesis of C3N4/BiOIO3 heterostructures with enhanced photocatalytic properties[J]. J. Colloid Interface Sci., 2015,442:97-102. doi: 10.1016/j.jcis.2014.11.061

    15. [15]

      Cui D H, Song X C, Zheng Y F. A novel AgI/BiOIO3 nanohybrid with improved visible-light photocatalytic activity[J]. RSC Adv., 2016,6(76):71983-71988. doi: 10.1039/C6RA14486A

    16. [16]

      Qi Y L, Song X C, Zheng Y F. Enhanced photocatalytic performance of heterojunction BiOI/BiOIO3 nanocomposites under simulated solar light[J]. Nano, 2017,12(3)1750027. doi: 10.1142/S1793292017500278

    17. [17]

      MA Z Y, YE L, WU Y H, ZHAO T. Preparation and photocatalytic performance of B, N - SnO2/TiO2 photocatalyst[J]. Acta Chim. Sinica, 2021,79(9):1173-1179.

  • 加载中
    1. [1]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

Metrics
  • PDF Downloads(4)
  • Abstract views(636)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return