Citation: Tian-Xiang YANG, Yin-Hao WANG, Yong-Wei ZHANG, Zhuo-Lei LIU, Si-Ning YUN. Preparation and electrocatalytic properties of tungsten oxide nanorod cluster[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 221-233. doi: 10.11862/CJIC.2022.274 shu

Preparation and electrocatalytic properties of tungsten oxide nanorod cluster

  • Corresponding author: Si-Ning YUN, yunsining@xauat.edu.cn
  • Received Date: 4 July 2022
    Revised Date: 12 November 2022

Figures(9)

  • WO3 and W18O49 were prepared by a solvothermal method using WCl6 as a precursor and applied in dyesensitized solar cells (DSSCs) and water electrolysis for hydrogen evolution reaction (HER). The structures and morphologies of WO3 and W18 O49 were characterized by X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM), respectively. The results showed both WO3 and W18O49 were monoclinic phases, and the morphology appeared as a cluster of oriented nanorods. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) proved that W18O49 contained abundant oxygen vacancies. Based on the excellent electrochemical properties of oxygen vacancies, the counter electrode with W18O49 based DSSCs obtained a power conversion efficiency (PCE) of 7.41%, which was higher than WO3 (6.12%) and Pt (7.27%). The cathode with W18O49 exhibited a low overpotential of 130 mV at 10 mA·cm-2 and a Tafel slope of 88 mV·dec-1 in alkaline hydrogen evolution. In addition, the W18O49 catalyst showed great electrocatalytic stability in both iodine electrolyte and 1.0 mol·L-1 KOH solution.
  • 加载中
    1. [1]

      Gong J W, Sumathy K, Qiao Q Q, Zhou Z P. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends[J]. Renew. Sust. Energ. Rev., 2017,68:234-246. doi: 10.1016/j.rser.2016.09.097

    2. [2]

      Wang J, Xu F, Jin H Y, Chen Y Q, Wang Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Adv. Mater., 2017,29(14)1605838. doi: 10.1002/adma.201605838

    3. [3]

      Ahmed U, Alizadeh M, Rahim N A, Shahabuddin S, Ahmed M S, Pandey A K. A comprehensive review on counter electrodes for dye sensitized solar cells: A special focus on Pt-TCO free counter electrodes[J]. Sol. Energy, 2018,174:1097-1125. doi: 10.1016/j.solener.2018.10.010

    4. [4]

      Karim N A, Mehmood U, Zahid H F, Asif T. Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs)[J]. Sol. Energy, 2019,185:165-188. doi: 10.1016/j.solener.2019.04.057

    5. [5]

      Xu J, Ding T T, Wang J, Zhang J, Wang S, Chen C Q, Fang Y Y, Wu Z H, Huo K F, Dai J N. Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor[J]. Electrochim. Acta, 2015,174:728-734. doi: 10.1016/j.electacta.2015.06.044

    6. [6]

      Li Y H, Liu P F, Pan L F, Wang H F, Yang Z Z, Zheng L R, Hu P, Zhao H J, Gu L, Yang H G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water[J]. Nat. Commun., 2015,6(1)8064. doi: 10.1038/ncomms9064

    7. [7]

      Wang Y H, Yun S N, Shi J, Zhang Y W, Dang J E, Dang C W, Liu Z L, Deng Y Y, Yang T X. Defect engineering tuning electron structure of biphasic tungsten-based chalcogenide heterostructure improves its catalytic activity for hydrogen evolution and triiodide reduction[J]. J. Colloid Interface Sci., 2022,625:800-816. doi: 10.1016/j.jcis.2022.06.051

    8. [8]

      Datta R S, Haque F, Mohiuddin M, Carey B J, Syed N, Zavabeti A, Zhang B, Khan H, Berean K J, Ou J Z, Mahmood N, Daeneke T, Kalantar-zadeh K. Highly active two dimensional α-MoO3-x for the electrocatalytic hydrogen evolution reaction[J]. J. Mater. Chem. A, 2017,5(46):24223-24231. doi: 10.1039/C7TA07705J

    9. [9]

      Liu J Q, Wan J, Liu L, Yang W J, Low J X, Gao X M, Fu F. Synergistic effect of oxygen defect and doping engineering on S-scheme O-ZnIn2S4/TiO2-x heterojunction for effective photocatalytic hydrogen production by water reduction coupled with oxidative dehydrogenation[J]. Chem. Eng. J., 2022,430133125. doi: 10.1016/j.cej.2021.133125

    10. [10]

      Luo Z, Miao R, Huan T D, Mosa I M, Poyraz A S, Zhong W, Cloud J E, Kriz D A, Thanneeru S, He J, Zhang Y S, Ramprasad R, Suib S L. Mesoporous MoO3-x material as an efficient electrocatalyst for hydrogen evolution reactions[J]. Adv. Energy Mater., 2016,6(16)1600528. doi: 10.1002/aenm.201600528

    11. [11]

      Pan J, Wang L Z, Yu J C, Liu G, Cheng H M. A Nonstoichiometric SnO2-δ nanocrystal-based counter electrode for remarkably improving the performance of dye-sensitized solar cells[J]. Chem. Commun., 2014,50(53):7020-7023. doi: 10.1039/c4cc02066a

    12. [12]

      Shen M K, Ding T B, Hartman S T, Wang F D, Krucylak C, Wang Z Y, Tan C, Yin B, Mishra R, Lew M D, Sadtler B. Nanoscale colocalization of fluorogenic probes reveals the role of oxygen vacancies in the photocatalytic activity of tungsten oxide nanowires[J]. ACS Catal., 2020,10(3):2088-2099. doi: 10.1021/acscatal.9b04481

    13. [13]

      Bayeh A W, Kabtamu D M, Chang Y C, Chen G C, Chen H Y, Liu T R, Wondimu T H, Wang K C, Wang C H. Hydrogen-treated defectrich W18O49 nanowire-modified graphite felt as high-performance electrode for vanadium redox flow battery[J]. ACS Appl. Energy Mater., 2019,2(4):2541-2551. doi: 10.1021/acsaem.8b02158

    14. [14]

      Li F, Gong H Y, Wang Y, Zhang H, Wang Y Z, Liu S N, Wang S, Sun C W. Enhanced activity, durability and anti-poisoning property of Pt/W18O49 for methanol oxidation with a sub-stoichiometric tungsten oxide W18O49 support[J]. J. Mater. Chem. A, 2014,2(47):20154-20163. doi: 10.1039/C4TA04220D

    15. [15]

      Liu W J, Jiang P G, Xiao Y Y, Liu J S. A study of the hydrogen adsorption mechanism of W18O49 using first-principles calculations[J]. Comput. Mater. Sci., 2018,154:53-59. doi: 10.1016/j.commatsci.2018.07.036

    16. [16]

      Choi H G, Jung Y H, Kim D K. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet[J]. J. Am. Ceram. Soc., 2005,88(6):1684-1686. doi: 10.1111/j.1551-2916.2005.00341.x

    17. [17]

      Hai G J, Huang J F, Cao L Y, Jie Y N, Li J Y, Wang X, Zhang G. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye[J]. J. Alloy. Compd., 2017,690:239-248. doi: 10.1016/j.jallcom.2016.08.099

    18. [18]

      Nishizawa K, Yamada Y, Yoshimura K. Low-temperature chemical fabrication of WO3 gasochromic switchable films: A comparative study of Pd and Pt nanoparticles dispersed WO3 films based on their structural and chemical properties[J]. Thin Solid Films, 2020,709138201. doi: 10.1016/j.tsf.2020.138201

    19. [19]

      DANG C W, ZHANG Y W, HAN F, DANG J E, LIU Z L, WANG Y H, DENG Y Y, YUN S N. Chemical co-precipitation preparation of ZnMoO4/aloe-derived porous carbon and catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(3):489-500.  

    20. [20]

      Sun M L, Yun S N, Shi J, Zhang Y W, Arshad A, Dang J E, Zhang L S, Wang X, Liu Z L. Designing and understanding the outstanding tri-iodide reduction of N-coordinated magnetic metal modified defectrich carbon dodecahedrons in photovoltaics[J]. Small, 2021,17(41)2102300. doi: 10.1002/smll.202102300

    21. [21]

      Li L, Shi J, Zhang L S, Zhao K F, Li X T, Zhang W M, Hagfeldt A, Yun S N. An experimental and theoretical exploration of the role of tri-element metal-nonmetal nanohybrids in photovoltaics[J]. Chem. Eng. J., 2021,413127491. doi: 10.1016/j.cej.2020.127491

    22. [22]

      Liu Y F, Yun S N, Zhou X, Hou Y Z, Zhang T H, Li J, Hagfeldt A. Intrinsic origin of superior catalytic properties of tungsten-based catalysts in dye-sensitized solar cells[J]. Electrochim. Acta, 2017,242:390-399. doi: 10.1016/j.electacta.2017.04.176

    23. [23]

      Hai G J, Huang J F, Cao L Y, Kajiyoshi K, Wang L, Feng L L, Chen J. Activation of urchin-like Ni-doped W18O49/NF by Electrochemical tuning for efficient water splitting[J]. J. Energy Chem., 2021,63:642-650. doi: 10.1016/j.jechem.2021.08.056

    24. [24]

      Sun L, Li Z, Su R, Wang Y L, Li Z L, Du B S, Sun Y, Guan P F, Besenbacher F, Yu M. Phase-transition induced conversion into a photothermal material: Quasi-metallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy[J]. Angew. Chem. Int. Ed., 2018,57(33):10666-10671. doi: 10.1002/anie.201806611

    25. [25]

      Liu D L, Zhang C, Yu Y F, Shi Y, Yu Y M, Niu Z Q, Zhang B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays[J]. Nano Res., 2018,11(2):603-613. doi: 10.1007/s12274-017-1670-8

    26. [26]

      Liang H F, Cao Z, Xia C, Ming F W, Zhang W L, Emwas A H, Cavallo L, Alshareef H N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering[J]. CCS Chem., 2020,3(3):1553-1561.

    27. [27]

      Hai G J, Huang J F, Cao L Y, Kajiyoshi K, Wang L, Feng L L, Chen J. Activation of urchin-like Ni-doped W18O49/NF by electrochemical tuning for efficient water splitting[J]. J. Energ. Chem., 2021,63:642-650. doi: 10.1016/j.jechem.2021.08.056

    28. [28]

      Zhong X, Sun Y Y, Chen X L, Zhuang G L, Li X N, Wang J G. Mo doping induced more active sites in urchin-like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2016,26(32):5778-5786. doi: 10.1002/adfm.201601732

    29. [29]

      He T, Wang Y F, Zeng J H. Stable, high-efficiency pyrrolidinium-based electrolyte for solid-state dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2015,7(38):21381-21390. doi: 10.1021/acsami.5b06035

    30. [30]

      Zhang C L, Deng L B, Zhang P X, Ren X Z, Li Y L, He T S. Mesoporous NiCo2O4 networks with enhanced performance as counter electrodes for dye-sensitized solar cells[J]. Dalton Trans., 2017,46(13):4403-4411. doi: 10.1039/C7DT00267J

    31. [31]

      Liu Y F, Yun S N, Zhou X, Hou Y Z, Zhang T H, Li J, Hagfeldt A. Intrinsic origin of superior catalytic properties of tungsten-based catalysts in dye-sensitized solar cells[J]. Electrochim. Acta, 2017,242:390-399. doi: 10.1016/j.electacta.2017.04.176

    32. [32]

      Wu M X, Lin X, Hagfeldt A, Ma T L. A novel catalyst of WO2 Nanorod for the counter electrode of dye-sensitized solar cells[J]. Chem. Commun., 2011,47(15):4535-4537. doi: 10.1039/c1cc10638d

    33. [33]

      Keawphaisan L, Harnchana V, Pimanpang S, Amornkitburung V. Hydrothermal synthesis of the composited WS2-W5O14-MWCNTs for high performance dye-sensitized solar cell counter electrodes[J]. J. Mater. Sci. Mater. Electron., 2017,28(24):18765-18772. doi: 10.1007/s10854-017-7825-2

    34. [34]

      Qian X, Liu L C, Huang J, Chen M, Hou L X. Ni-Fe-WSx polynary hollow nanoboxes as promising electrode catalysts for high-efficiency triiodide reduction in dye-sensitized solar cells[J]. J. Alloy. Compd., 2021,851156899. doi: 10.1016/j.jallcom.2020.156899

    35. [35]

      Yun S N, Si Y M, Shi J, Zhang T H, Hou Y Z, Liu H, Meng S, Hagfeldt A. Electronic structures and catalytic activities of niobium oxides as electrocatalysts in liquid-junction photovoltaic devices[J]. Sol. RRL, 2020,4(3)1900430. doi: 10.1002/solr.201900430

    36. [36]

      Wang X, Yun S N, Zhang Y W, Zhang L S, Dang J E, Sun M L, Liu Z L, Wang Y H. Boosting catalytic activity of niobium/tantalum-nitrogen active-sites for triiodide reduction in photovoltaics[J]. J. Colloid Interface Sci., 2021,603:651-665. doi: 10.1016/j.jcis.2021.06.128

    37. [37]

      Wang C, Yun S N, Fan Q Y, Wang Z Q, Zhang Y L, Han F, Si Y M, Hagfeldt A. A hybrid niobium-based oxide with bio-based porous carbon as an efficient electrocatalyst in photovoltaics: A general strategy for understanding the catalytic mechanism[J]. J. Mater. Chem. A, 2019,7(24):14864-14875. doi: 10.1039/C9TA03540K

    38. [38]

      Yun S N, Zhang Y W, Zhang L S, Liu Z L, Deng Y Y. Ni and Fe nanoparticles, alloy and Ni/Fe-Nx coordination co-boost the catalytic activity of the carbon-based catalyst for triiodide reduction and hydrogen evolution reaction[J]. J. Colloid Interface Sci., 2022,615:501-516. doi: 10.1016/j.jcis.2022.01.192

    39. [39]

      Li G R, Gao X P. Low-cost counter-electrode materials for dye-sensitized and perovskite solar cells[J]. Adv. Mater., 2020,32(3)1806478. doi: 10.1002/adma.201806478

    40. [40]

      Zhang Y L, Yun S N, Wang C, Wang Z Q, Han F, Si Y M. Bio-based carbon-enhanced tungsten-based bimetal oxides as counter electrodes for dye-sensitized solar cells[J]. J. Power Sources, 2019,423:339-348. doi: 10.1016/j.jpowsour.2019.03.054

    41. [41]

      Yun S N, Wang L, Guo W, Ma T L. Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells[J]. Electrochem. Commun., 2012,24:69-73. doi: 10.1016/j.elecom.2012.08.008

    42. [42]

      Chen M, Shao L L, Dong M Y, Lv X W, Yuan Z Y, Qian X, Han Y Y, Ding A X. Molecular-level synthesis of cobalt phosphide nanocrystals confined in highly nitrogen-doped mesoporous carbon electrocatalyst for highly efficient dye-sensitized solar cells[J]. ACS Sustain. Chem. Eng., 2020,8(46):17245-17261. doi: 10.1021/acssuschemeng.0c06106

    43. [43]

      Maity S, Das B, Samanta M, Das B K, Ghosh S, Chattopadhyay K K. MoSe2-amorphous CNT hierarchical hybrid core-shell structure for efficient hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2020,3(5):5067-5076. doi: 10.1021/acsaem.0c00688

    44. [44]

      Pham T D, Lee B K, Nguyen V N, Dao V D. Novel photocatalytic activity of vanadium-doped tantalum nitride sensitized/protected by polyaniline for efficient visible light water splitting[J]. J. Catal., 2017,352:13-21. doi: 10.1016/j.jcat.2017.04.024

    45. [45]

      Dang C W, Yun S N, Zhang Y W, Dang J E, Wang Y H, Liu Z L, Deng Y Y, Yang G P, Yang J J. A tailored interface engineering strategy designed to enhance the electrocatalytic activity of NiFe2O4/NiTe heterogeneous structure for advanced energy conversion applications[J]. Mater. Today Nano, 2022,20100242. doi: 10.1016/j.mtnano.2022.100242

    46. [46]

      Dang J E, Yun S N, Zhang Y W, Yang J J, Liu Z L, Dang C W, Wang Y H, Deng Y Y. Constructing double-shell structured N-C-in-Co/N-C electrocatalysts with nanorod- and rhombic dodecahedron-shaped hollow morphologies to boost electrocatalytic activity for hydrogen evolution and triiodide reduction reaction[J]. Chem. Eng. J., 2022,449137854. doi: 10.1016/j.cej.2022.137854

    47. [47]

      Han F, Yun S N, Shi J, Zhang Y W, Si Y M, Wang C, Zafar N, Li J W, Qiao X Y. Efficient dual-function catalysts for triiodide reduction reaction and hydrogen evolution reaction using unique 3D network aloe waste-derived carbon-supported molybdenum-based bimetallic oxide nanohybrids[J]. Appl. Catal. B-Environ., 2020,273119004. doi: 10.1016/j.apcatb.2020.119004

    48. [48]

      Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020,120(2):851-918. doi: 10.1021/acs.chemrev.9b00248

    49. [49]

      Huang N, Peng R C, Ding Y Y, Yan S F, Li G W, Sun P P, Sun X H, Liu X Q, Yu H H. Facile chemical-vapour-deposition synthesis of vertically aligned co-doped MoS2 nanosheets as an efficient catalyst for triiodide reduction and hydrogen evolution reaction[J]. J. Catal., 2019,373:250-259. doi: 10.1016/j.jcat.2019.04.007

    50. [50]

      Tong R, Qu Y J, Zhu Q, Wang X N, Lu Y H, Wang S P, Pan H. Combined experimental and theoretical assessment of WXy (X=C, N, S, P) for hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2020,3(1):1082-1088. doi: 10.1021/acsaem.9b02114

    51. [51]

      Xu S S, Yang L Q, Liu Y Z, Hua Y, Gao X M, Neville A. Boosting hydrogen evolution performance by using a plasma-sputtered porous monolithic W2C@WC1-x/Mo Film electrocatalyst[J]. J. Mater. Chem. A, 2020,8(37):19473-19483. doi: 10.1039/D0TA05251E

    52. [52]

      Chen J P, Ren B W, Cui H, Wang C X. Constructing pure phase tungsten-based bimetallic carbide nanosheet as an efficient bifunctional electrocatalyst for overall water splitting[J]. Small, 2020,16(23)1907556. doi: 10.1002/smll.201907556

    53. [53]

      Hu Y, Yu B, Ramadoss M, Li W X, Yang D X, Wang B, Chen Y F. Scalable synthesis of heterogeneous W-W2C nanoparticle-embedded CNT Networks for boosted hydrogen evolution reaction in both acidic and alkaline media[J]. ACS Sustain. Chem. Eng., 2019,7(11):10016-10024. doi: 10.1021/acssuschemeng.9b01199

    54. [54]

      Chakrabartty S, Sahu D, Raj C R. General approach for the synthesis of nitrogen-doped carbon encapsulated Mo and W phosphide nanostructures for electrocatalytic hydrogen evolution[J]. ACS Appl. Energy Mater., 2020,3(3):2811-2820. doi: 10.1021/acsaem.9b02455

    55. [55]

      Li Y B, Tan X, Tan H, Ren H J, Chen S, Yang W F, Smith S C, Zhao C. Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution[J]. Energy Environ. Sci., 2020,13(6):1799-1807. doi: 10.1039/D0EE00666A

    56. [56]

      Zhang Y W, Yun S N, Dang J E, Dang C W, Yang G P, Wang Y H, Liu Z L, Deng Y Y. Defect engineering via ternary nonmetal doping boosts the catalytic activity of ZIF-derived carbon-based metal-free catalysts for photovoltaics and water splitting[J]. Mater. Today Phys., 2022,27100785. doi: 10.1016/j.mtphys.2022.100785

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(7)
  • Abstract views(661)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return