Citation: Jie WANG, Ai-Min WU, Zhi-Wen QIU, Wen-Jun QIN, Ang DING, Hao HUANG. N-doped carbon nanotubes catalyst with highly loaded metals for high-performance aluminum-air batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 337-345. doi: 10.11862/CJIC.2022.269 shu

N-doped carbon nanotubes catalyst with highly loaded metals for high-performance aluminum-air batteries

  • Corresponding author: Ai-Min WU, aimin@dlut.edu.cn
  • Received Date: 19 August 2022
    Revised Date: 9 November 2022

Figures(8)

  • N-doped carbon nanotube (NCNTs) with highly loaded metal catalysts (Fe/Ce-NCNTs) were synthesized via high-temperature pyrolysis method with Fe-based catalysts introducing Ce metallic. Ce metal can better promote the growth of carbon nanotubes (CNTs), anchoring more iron atoms and increasing the number of Fe—NX active sites. A highly conductive 3D network structure facilitates oxygen diffusion, electron transfer, and transport of reac-tion products. The Fe/Ce-NCNTs catalysts exhibited good catalytic activity (the half wave potential was 0.86 V (vs RHE)) and stability in alkaline media. Moreover, the assembled Al-air batteries (AABs) with Fe/Ce-NCNT exhibited a high performance with a power density of 142 mW·cm-2 and discharge specific capacity of 865 mAh·g-1 at 50 mA· cm-2. Fe/Ce-NCNTs possessed high voltage under a high current density load.
  • 加载中
    1. [1]

      Liu Z N, Li Z Y, Ma J, Dong X, Ku W, Wang M, Sun H, Liang S, Lu G L. Nitrogen and cobalt-doped porous biocarbon materials derived from corn stover as efficient electrocatalysts for aluminum-air batter-ies[J]. Energy, 2018,162:453-459. doi: 10.1016/j.energy.2018.07.175

    2. [2]

      Cheng R Q, Wang F, Jiang M, Li K Q, Zhao T S, Meng P Y, Yang J, Fu C P. Plasma-assisted synthesis of defect-rich O and N codoped car-bon nanofibers loaded with manganese oxides as an efficient oxygen reduction electrocatalyst for aluminum-air batteries[J]. ACS Appl. Mater. Interfaces, 2021,13:37123-37132. doi: 10.1021/acsami.1c09067

    3. [3]

      He Y H, Liu S W, Priest C, Shi Q R, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement[J]. Chem. Soc. Rev., 2020,49:3484-3524. doi: 10.1039/C9CS00903E

    4. [4]

      YANG X D, CHEN C, ZHOU Z Y, SUN S G. Advances in active site structure of carbon-based non-precious metal catalysts for oxygen reduction reaction[J]. Acta Phys.-Chim. Sin., 2019,35:472-485.  

    5. [5]

      Yang W X, Liu X J, Yue X Y, Jia J B, Guo S J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient cataly-sis for oxygen reduction[J]. J. Am. Chem. Soc., 2015,137:1436-1439. doi: 10.1021/ja5129132

    6. [6]

      Saito Y, Kawabata K, Okuda M. Single-layered carbon nanotubes syn-thesized by catalytic assistance of rare-earths in a carbon arc[J]. J. Phys. Chem., 1995,99:16076-16079. doi: 10.1021/j100043a056

    7. [7]

      Xiao M L, Xing Z H, Jin Z, Liu C P, Ge J J, Zhu J B, Wang Y, Zhao X, Chen Z W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Adv. Mater., 2020,322004900. doi: 10.1002/adma.202004900

    8. [8]

      Bokobza L, Zhang J. Raman spectroscopic characterization of multi-wall carbon nanotubes and of composites[J]. Express Polym. Lett., 2012,6:601-608. doi: 10.3144/expresspolymlett.2012.63

    9. [9]

      Qin X J, Peng F, Yang F, He X H, Huang H X, Luo D, Yang J, Wang S, Liu H C, Peng L M, Li Y. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports[J]. Nano Lett., 2014,14:512-517. doi: 10.1021/nl403515c

    10. [10]

      Zhang H W, Zhao M Q, Liu H R, Shi S R, Wang Z H, Zhang B, Song L, Shang J Z, Yang Y, Ma C, Zheng L R, Han Y H, Huang W. Ultra-stable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries[J]. Nano Lett., 2021,21:2255-2264. doi: 10.1021/acs.nanolett.1c00077

    11. [11]

      Hao R, Ren J T, Lv X W, Li W, Liu Y P, Yuan Z Y. N-doped porous carbon hollow microspheres encapsulated with iron-based nanocom-posites as advanced bifunctional catalysts for rechargeable Zn-air battery[J]. J. Energy Chem., 2020,49:14-21. doi: 10.1016/j.jechem.2020.01.007

    12. [12]

      Han J X, Bao H L, Wang J Q, Zheng L R, Sun S R, Wang Z L, Sun C W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery[J]. Appl. Catal. B -Environ., 2021,280119411. doi: 10.1016/j.apcatb.2020.119411

    13. [13]

      Yang L, Cai Z, Hao L, Xing Z P, Dai Y, Xu X, Pan S Y, Duan Y Q, Zou J L. Nano Ce2O2S with highly enriched oxygen-deficient Ce3+ sites supported by N and S dual-doped carbon as an active oxygen-supply catalyst for the oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2017,9:22518-22529. doi: 10.1021/acsami.7b04997

    14. [14]

      Li G Z, Mu Y C, Huang Z X, Wang N G, Chen Y Y, Liu J, Liu G P, Li O L, Shao M H, Shi Z C. Poly-active centric Co3O4-CeO2/Co-N-C composites as superior oxygen reduction catalysts for Zn-air batter-ies[J]. Sci. China Mater., 2020,64:73-84.

    15. [15]

      Li J C, Qin X P, Xiao F, Liang C H, Xu M J, Meng Y, Sarnello E, Fang L Z, Li T, Ding S C, Lyu Z Y, Zhu S Q, Pan X Q, Hou P X, Liu C, Lin Y H, Shao M H. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries[J]. Nano Lett., 2021,21:4508-4515. doi: 10.1021/acs.nanolett.1c01493

    16. [16]

      Robertson J. Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires[J]. J. Mater. Chem., 2012,2219858. doi: 10.1039/c2jm33732k

    17. [17]

      Journet C, Picher M, Jourdain V. Carbon nanotube synthesis: From large-scale production to atom-by-atom growth[J]. Nanotechnology, 2012,23142001. doi: 10.1088/0957-4484/23/14/142001

    18. [18]

      Silvearv F, Larsson P, Jones S L T, Ahuja R, Larsson J A. Establish-ing the most favorable metal-carbon bond strength for carbon nano-tube catalysts[J]. J. Mater. Chem. C, 2015,3:3422-3427. doi: 10.1039/C5TC00143A

    19. [19]

      Allaedini G, Aminayi P, Tasirin S M. Methane decomposition for car-bon nanotube production: Optimization of the reaction parameters using response surface methodology[J]. Chem. Eng. Res. Des., 2016,112:163-174. doi: 10.1016/j.cherd.2016.06.010

    20. [20]

      Hu J W, Wu D Y, Zhu C, Hao C, Xin C C, Zhang J W, Guo J Y, Li N N, Zhang G F, Shi Y T. Melt-salt-assisted direct transformation of solid oxide into atomically dispersed FeN4 sites on nitrogen-doped porous carbon[J]. Nano Energy, 2020,72104670. doi: 10.1016/j.nanoen.2020.104670

    21. [21]

      Fu X G, Li N, Ren B H, Jiang G P, Liu Y R, Hassan F M, Su D, Zhu J B, Yang L, Bai Z Y, Cano Z P, Yu A P, Chen Z W. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction perfor-mance in proton exchange membrane fuel cell[J]. Adv. Energy Mater., 2019,91803737. doi: 10.1002/aenm.201803737

    22. [22]

      Li H G, Di S L, Niu P, Wang S L, Wang J, Li L. A durable half-metallic diatomic catalyst for efficient oxygen reduction[J]. Energy Environ. Sci., 2022,15:1601-1610. doi: 10.1039/D1EE03194E

    23. [23]

      Wang C, Liu Y P, Li Z F, Wang L K, Niu X L, Sun P. Novel space-confinement synthesis of two-dimensional Fe, N-codoped graphene bifunctional oxygen electrocatalyst for rechargeable air-cathode[J]. Chem. Eng. J., 2021,411128492. doi: 10.1016/j.cej.2021.128492

    24. [24]

      Zhang Q R, Kumar P, Zhu X F, Daiyan R, Bedford N M, Wu K H, Han Z J, Zhang T R, Amal R, Lu X Y. Electronically modified atom-ic sites within a multicomponent Co/Cu composite for efficient oxy-gen electroreduction[J]. Adv. Energy Mater., 2021,11104670.

    25. [25]

      Wang W, Xue S Y, Li J M, Wang F X, Kang Y M, Lei Z Q. Cerium carbide embedded in nitrogen-doped carbon as a highly active elec-trocatalyst for oxygen reduction reaction[J]. J. Power Sources, 2017,359:487-493. doi: 10.1016/j.jpowsour.2017.05.033

    26. [26]

      Liu S H, Cao Z B, Meng Y, Li Y J, Yang W M, Chang Z, Liu W, Sun X M. Aerophilic Co-embedded N-doped carbon nanotube arrays as highly efficient cathodes for aluminum-air batteries[J]. ACS Appl. Mater. Interfaces, 2021,13:26853-26860. doi: 10.1021/acsami.1c00837

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(2)
  • Abstract views(712)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return