Citation: Xiao-Yan XIN, Feng-Jiao CHEN, Wen-Yu LI, Jie WANG, Chen YANG, Min LI, Ying SHI, Wen-Min WANG. Crystal structure, fluorescence properties, and biological activity of Ln2 complexes based on Schiff base ligand[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 1-12. doi: 10.11862/CJIC.2022.268 shu

Crystal structure, fluorescence properties, and biological activity of Ln2 complexes based on Schiff base ligand

Figures(11)

  • Three new binuclear Ln-based complexes with the formula [Ln2(acac)2(L)2(C2H5OH)2] (Ln=Tb (1), Ho (2), Er (3); acac-=acetylacetonate) have been synthesized via the solvothermal method by using a polydentate Schiff base ligand (H2L=(E)-N'-(3-ethoxy-2-hydroxyb enzylidene)-3-hydroxypicolinohydrazide) reacting with Ln(acac)3·2H2O. Single-crystal X-ray structures reveal that complexes 1-3 are mainly composed of two Ln ions, two acac- ions, two L2- ions, two C2H5OH molecules, and the two central Ln ions are connected by two μ2-O atoms forming a"parallelogram-shaped"Ln2O2 core. The solid-state fluorescence property shows that the emission spectrum of complex 1 exhibited the characteristic emissions of Tb ions under the excitation of 296 nm. For complex 1, four characteristic emission peaks were observed at 490, 545, 585, and 620 nm, corresponding to the transitions of Tb ion from 5D4 to 7FJ (J=6, 5, 4, 3). In addition, the biological activity study shows that complexes 1-3 had stronger antibacterial activity than H2L and Ln(acac)3·2H2O. The interaction between complexes 1-3 and DNA was studied by ultraviolet spectroscopy, cyclic voltammetry, gel electrophoresis, and fluorescence spectroscopy. The results reveal that complexes 1-3 could bind to calf thymus DNA mainly by intercalation.
  • 加载中
    1. [1]

      Wang W M, Wu Z L, Cui J Z. Molecular assemblies from linear-shaped Ln4 clusters to Ln8 clusters using different β-diketonates: Disparate magnetocaloric effects and single-molecule magnet behaviours[J]. Dalton Trans., 2021,50:12931-12943. doi: 10.1039/D1DT01344K

    2. [2]

      Wang W M, Zhang T T, Wang D, Cui J Z. Structures and magnetic properties of novel Ln(Ⅲ)-based pentanuclear compounds: Magnetic refrigeration and single-molecule magnet behavior[J]. New J. Chem., 2020,44:19351-19359. doi: 10.1039/D0NJ04469E

    3. [3]

      Wang W M, Kang X M, Shen H Y, Wu Z L, Gao H Y, Cui J Z. Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 clusters[J]. Inorg. Chem. Front., 2018,5:1876-1885. doi: 10.1039/C8QI00214B

    4. [4]

      Wang W M, Qiao W Z, Zhang H X, Wang S Y, Nie Y Y, Chen H M, Liu Z, Gao H L, Cui J Z, Zhao B. Structures and magnetic properties of several phenoxo-O bridged dinuclear lanthanide complexes: Dy derivatives displaying substituent dependent magnetic relaxation behavior[J]. Dalton Trans., 2016,45:8182-8191. doi: 10.1039/C6DT00220J

    5. [5]

      Wang W M, He L Y, Wang X X, Shi Y, Wu Z L, Cui J Z. Linear-shaped Ln4 and Ln6 compounds constructed by a polydentate Schiff base ligand and a β-diketone co-ligand: Structures, fluorescence properties, magnetic refrigeration and single-molecule magnet behavior[J]. Dalton Trans., 2019,48:16744-16755. doi: 10.1039/C9DT03478A

    6. [6]

      Bruno S M, Ferreira R A S, Paz F A A, Carlos L D, Pillinger M, Ribeiro-Claro P, Goncalves I S. Structural and photoluminescence studies of a europium(Ⅲ)tetrakis(β-diketonate) complex with tetrabutylammonium, imidazolium, pyridinium and silica-supported imidazolium counterions[J]. Inorg. Chem., 2009,48(11):4882-4895. doi: 10.1021/ic900274a

    7. [7]

      Wang W M, Zhang H X, Wang S Y, Shen H Y, Gao H L, Cui J Z, Zhao B. Ligand field affected single-molecule magnet behavior of lanthanide dinuclear complexes with an 8-hydroxyquinoline Schiff base derivative as bridging ligand[J]. Inorg. Chem., 2015,54(22):10610-10622. doi: 10.1021/acs.inorgchem.5b01404

    8. [8]

      Wang W M, Wang W T, Wang M Y, Gu A L, Hu T D, Zhang Y X, Wu Z L. A porous copper-organic framework assembled by[Cu12] nanocages: Highly efficient CO2 capture and chemical fixation, and theoretical DFT calculations[J]. Inorg. Chem., 2021,60(12):9122-9131. doi: 10.1021/acs.inorgchem.1c01104

    9. [9]

      Wu Z L, Gu A L, Gao N, Cui H Y, Wang W M, Cui J Z. Solvent-dependent assembly and magnetic relaxation behaviors of[Cu4I3] cluster-based lanthanide MOFs: Acting as efficient catalysts for carbon dioxide conversion with propargylic alcohols[J]. Inorg. Chem., 2020,59(20):15111-15119. doi: 10.1021/acs.inorgchem.0c02050

    10. [10]

      Wang W M, Xin X Y, Qiao N, Wu Z L, Li L, Zou J Y. Self-assembly of octanuclear Ln(Ⅲ)-based clusters: Large magnetocaloric effect and highly efficient conversion of CO2[J]. Dalton Trans., 2022,51:13957-13969. doi: 10.1039/D2DT01892F

    11. [11]

      HUANG J, CUI Z N, LI Y, YANG X L. Bioactivities of copper complexes with Schiff bases[J]. Chin. J. Org. Chem., 2008,28(4):598-604.  

    12. [12]

      Fesatidou M, Petrou A, Athina G. Heterocycle compounds with antimicrobial activity[J]. Curr. Pharm. Des., 2020,26(8):867-904. doi: 10.2174/1381612826666200206093815

    13. [13]

      Kashyap A, Adhikari N, Das A, Shakya A, Ghosh S K, Singh U P, Bhat H R. Review on synthetic chemistry and antibacterial importance of thiazole derivatives[J]. Curr. Drug Discovery Technol., 2018,15(3):214-228. doi: 10.2174/1570163814666170911144036

    14. [14]

      Lee J H, Liu Q D, Motala M, Dane J, Gao J, Kang Y J, Wang S. Photoluminescence, electroluminescence, and complex formation of novel N-7-azaindolyl-2, 2'-dipyridylamino-functionalized siloles[J]. Chem. Mater., 2004,16(10):1869-1877. doi: 10.1021/cm035379d

    15. [15]

      Zhou Y, Xiao Y, Li D, Fu M Y, Qian X H. Novel fluorescent fluorineboron complexes: Synthesis, crystal structure, photoluminescence, and electrochemistry properties[J]. J. Org. Chem., 2008,73(4):1571-1574. doi: 10.1021/jo702265x

    16. [16]

      Zhang H, Song H W, Yu H Q, Bai X, Li S W, Pan G H, Dai Q L, Wang T, Li W L, Lu S Z, Ren X G, Zhao H F. Electrospinning preparation and photoluminescence properties of rare-earth complex/polymer composite fibers[J]. J. Phys. Chem. C, 2007,111(17):6524-6527. doi: 10.1021/jp0684123

    17. [17]

      Tiseanu C, Parvulescu V I, Kumke M U, Dobroiu S, Gessner A, Simon S. Effects of support and ligand on the photoluminescence properties of siliceous grafted europium complexes[J]. J. Phys. Chem. C, 2009,113(14):5784-5791. doi: 10.1021/jp808411e

    18. [18]

      Pracharova J, Zerzankova L, Stepankova J, Novakova O, Farrer N J, Sadler P J, Brabec V, Kasparkova J. Interactions of DNA with a new platinum(Ⅳ) azide dipyridine complex activated by UVA and visible light: Relationship to toxicity in tumor cells[J]. Chem. Res. Toxicol., 2012,25(5):1099-1111. doi: 10.1021/tx300057y

    19. [19]

      HUANG C X, GU J, XIONG W M, CHEN J Z, NIE X L, SHANGGUAN X C. Synthesis, crystal structures and antibacterial activities of two complexes of Zn(Ⅱ)/Cd(Ⅱ) assembled by 4-carboxy-methoxycinnamic acid ligand[J]. Chinese J. Inorg. Chem., 2021,37(7):1197-1203.  

    20. [20]

      HE Q Z, YU H, ZHOU M F, XU Y M, SHEN J Y. Synthesis, charac-terization and biological activity of rare earth complexes with L-aspartic acid and o-phenanthroline[J]. Journal of the Chinese Rare Earth Society, 2007,25(2):150-156. doi: 10.3321/j.issn:1000-4343.2007.02.004

    21. [21]

      Yousif E, Majeed A, Al-Sammarrae K, Salih N, Salimon J, Abdullah B. Metal complexes of Schiff base: Preparation, characterization and antibacterial activity[J]. Arab. J. Chem., 2017,10(02):S1639-S164.

    22. [22]

      XU Y Z, SHEN J B, ZHAO G L, HU W J. Syntheses, crystal structures and DNA-binding of two manganese complexes[J]. Chinese J. Inorg. Chem., 2022,38(2):285-294.  

    23. [23]

      CAI D H, MO H W, HE L, LE X Y. Crystal structure, DNA binding properties and biological activities of a ternary mixed-ligand copper(Ⅱ) complex[J]. Chinese J. Inorg. Chem., 2021,37(1):74-84.  

    24. [24]

      WANG X T. Design, synthesis, biological activity and fluorescent probe properties of 2-hydroxy-1-naphthalaldehyde Schiff base metal complexes. Tianjin: Tianjin Medical University, 2017.

    25. [25]

      Xue S F, Zhao L, Guo Y N, Zhang P, Tang J K. The use of a versatile o-vanilloyl hydrazone ligand to prepare SMM-like Dy3 molecular cluster pair[J]. Chem. Commun., 2012,48(71):8946-8948. doi: 10.1039/c2cc34737g

    26. [26]

      Caris C, Baret P, Pierre J L, Serratrice G, Laulhère J P. Metabolization of iron by plant cells using O-Trensox, a high-affinity abiotic iron-chelating agent[J]. Biochem. J., 1995,312(3):879-885. doi: 10.1042/bj3120879

    27. [27]

      Katagiri S, Tsukahara Y, Hasegawa Y, Wada Y. Energy-transfer mechanism in photoluminescent terbium(Ⅲ) complexes causing their temperature-dependence[J]. Bull. Chem. Soc. Jpn., 2007,80(08):1492-1503. doi: 10.1246/bcsj.80.1492

    28. [28]

      Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structure. University of Göttingen, Germany, 1997.

    29. [29]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    30. [30]

      LI J H, MA H Q, CHEN S W. Studies on antimicrobial effect of grape-polyphenols[J]. Journal of Chinese Institute of Food Science and Technology, 2008,8(6):100-107. doi: 10.16429/j.1009-7848.2008.02.026

    31. [31]

      WEI W, LI S Y, WANG M J, MA C Y, HAO M M, SONG X M. Probiotic lactic acid bacteria to fluoroquinolones sensitivity detection method[J]. Food Science and Technology, 2013,38(3):22-26.  

    32. [32]

      Christopher D F, Havard J, Kai H, Warren A C, Nelly P, Robert E W Hancock , Artem C. Identification of novel antibacterial peptides by chemoinformatics and machine learning[J]. J. Med. Chem., 2009,52(7):2006-2015. doi: 10.1021/jm8015365

    33. [33]

      Neelakantan M A, Sundaram M, Nair M S. Solution equilibria of Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) complexes involving pyridoxine and imidaz-ole containing ligands: pH metric, spectral, electrochemical, and biological studies[J]. J. Chem. Eng. Data, 2011,56(5):2527-2535. doi: 10.1021/je200054w

    34. [34]

      Kasuga N C, Sekino K, Ishikawa M, Honda A, Yokoyama M, Nakano S, Shimada N, Koumo C, Nomiya K. Synthesis, structural character-ization and antimicrobial activities of zinc(Ⅱ) complexes with four thi-osemicarbazone and two semicarbazone ligands[J]. J. Inorg. Biochem., 2003,96(2/3):298-310.

    35. [35]

      Shen Z H, Xu D F, Chen N N, Zhou X N, Chen X K, Xu Y H. Synthesis, characterization, and biological activity of some lanthanide ternary complexes[J]. J. Coord. Chem., 2011,64(13):2342-2352. doi: 10.1080/00958972.2011.595482

    36. [36]

      XIA Q C, SHEN Z H, HE Q Z, XU D F, PENG Z F, SHAO C Y. Synthesis, characterization and biological activity of rare earth complexes with fural salicylhydrazone and molybdic acid[J]. Acta Chim. Sinica, 2009,67(16):1843-1850. doi: 10.3321/j.issn:0567-7351.2009.16.005

    37. [37]

      Acheampong Y B, Adimado A A, Patel K S. Antibacterial activity of some β-diketones[J]. Indian J. Pharm. Sci., 1984,46:207-209.

    38. [38]

      Anwar M U, Dawe L N, Tandon S S, Bunge S D, Thompson L K. Polynuclear lanthanide (Ln) complexes of a tri-functional hydrazone ligand-mononuclear (Dy), dinuclear (Yb, Tm), tetranuclear (Gd), and hexanuclear (Gd, Dy, Tb) examples[J]. Dalton Trans., 2013,42(21):7781-7794. doi: 10.1039/c3dt32732a

    39. [39]

      Yu H, Yang J X, Han J Q, Li P F, Hou Y L, Wang W M, Fang M. Tetranuclear lanthanide complexes showing magnetic refrigeration and single molecule magnet behavior[J]. New J. Chem., 2019,43(21):8067-8074.

    40. [40]

      Canaj A B, Tsikalas G K, Philippidis A, Milios A. Heptanuclear lanthanide[Ln7] compounds: From blue-emitting solutionstable complexes to hybrid compounds[J]. Dalton Trans., 2014,43(33):12486-12494.

    41. [41]

      The National Reform and Development Commission. Inorganic antibacterial agentsFunction and evaluation: HG/T 3794—2005. Beijing: Chemical Industry Press, 2005.

    42. [42]

      Fjell C D, Jenssen H, Hilpert K, Cheung W A, Pante N, Hancock R E W, Cherkasov A. Identification of novel antibacterial peptides by chemoinformatics and machine learning[J]. J. Med. Chem., 2009,52(7):2006-2015. doi: 10.1021/jm8015365

    43. [43]

      Kasuga N C, Sekino K, Ishikawa M, Shimada N, Nomiya K. Synthesis, structural characterization and antimicrobial activities of 4- and 6-coordinate nickel(Ⅱ) complexes with three thiosemicarbazones and semicarbazone ligands[J]. J. Inorg. Biochem., 2001,84:55-65.

    44. [44]

      LI X F, FENG X Q, ZHANG H W, YANG S. Synthesis, characterization and antibacterial activity of rare earth complexes of methacrylic acid and 8-hydroxyquinoline[J]. Chinese Journal of Rare Metals, 2015,39(1):62-67.  

    45. [45]

      ZHOU Q H. Syntheses of the metal complexes involving benzimidazole and their interaction with DNA. Taiyuan: Shanxi University, 2006.

    46. [46]

      LI Y P. Syntheses, characterization of the metal complexes involving biimidazole and their interaction with DNA. Taiyuan: Shanxi University, 2007.

    47. [47]

      ZHOU C Y. Synthesis, characterization of the metal complexes involving polyamide compounds and their interaction with DNA. Taiyuan: Shanxi University, 2007.

    48. [48]

      XI X L. Study on the interaction of biology small molecule with DNA by spectrum and 2D NMR. Taiyuan: Shanxi University, 2008.

    49. [49]

      XU D F, SHEN Z H, XIA Q C, YANG Z F, HE Q Z, SUN D Z. Synthesis, characterization and related biological activities of rare earth organic complexes containing heterocyclic ligands[J]. Journal of Shanghai Normal University, 2008,37(5):499-503.  

    50. [50]

      ZHOU M F. Synthesis, characterization and study on biological properties of RE, RE-Cu metal complexes. Shanghai: Shanghai Normal University, 2008.

    51. [51]

      Li H, Ji L N, Li W S, Xu Z H. Progress in electrochemical studies of deoxyribonucleic acid[J]. Inorg. Chim. Acta, 2003,19(3):225-231.

    52. [52]

      WANG Q X, JIAO K, SUN W. Spectroscopic and electrochemical studies on the interaction between quercetin and DNA[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2004,25(5):381-384.  

    53. [53]

      LI H, JIANG X, CHAO H, YE B H, JI L N. Electrochemical behavior of mononuclear and symmetrical binuclear ruthenium(Ⅱ) complexes on a platinum electrode[J]. Acta Chim. Sinica, 2000,58(7):825-830.  

    54. [54]

      Jaividhya P, Dhivya R, Akbarsha M A, Palaniandavarae M. Efficient DNA cleavage mediated by mononuclear mixed ligand copper(Ⅱ) phenolate complexes: The role of co-ligand planarity on DNA binding and cleavage and anticancer activity[J]. J. Inorg. Biochem., 2012,114:94-105.

    55. [55]

      Liao C, Zhu X, Sun X G, Dai S. Investigation of carbon-2 substituted imidazoles and their corresponding ionic liquids[J]. Tetrahedron Lett., 2011,52(41):5308-5310.

    56. [56]

      Nebe T, Xu J Y, Beitat A, Würtelea C, Walterc O, Serafina M, Schindlera S. Iron and cobalt complexes with the ligand (2-aminoethyl) bis(2-pyridylmethyl) amine (uns-penp) and derivatives[J]. Inorg. Chim. Acta, 2010,363(12):2965-2970.

    57. [57]

      Xu J Y, Astner J, Walter O W, Heinemann F, Schindler S, Merkel M, Krebs B. Iron complexes with the ligand N', N'-bis[(2-pyridyl) methyl]ethylenediamine (uns-penp) and its amide derivative N-acetyl-N', N'-bis[(2-pyridyl)methyl]ethylenediamine (acetyl-uns-penp)[J]. Eur.J. Inorg. Chem., 2006(8):1601-1610.

    58. [58]

      Cubanski J R, Cameron S A, Crowley J D, James D C, Allan G B. Low symmetry pyrazole-based tripodal tetraamine ligands: Metal complexes and ligand decomposition reactions[J]. Dalton Trans., 2013,42(6):2174-2185.

    59. [59]

      Casey T M, Grzyska P K, Hausinger R P, John M C. Measuring the orientation of taurine in the active site of the non-heme Fe(Ⅱ)/α-ketoglutarate-dependent taurine hydroxylase (TauD) using electron spin echo envelope modulation (ESEEM) spectroscopy[J]. J. Phys. Chem. B, 2013,117:10384-10394.

    60. [60]

      Lakowicz J R, Weber G. Quenching of fluorescence by oxygen—Probe for structural fluctuations in macromolecules[J]. Biochemistry, 1973,12(21):4161-4170.

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    17. [17]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    20. [20]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

Metrics
  • PDF Downloads(11)
  • Abstract views(1285)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return