Citation: Wei-Wei JIANG, Jun-Jie LI, Cheng-Zhou YE, Jing ZHANG, Long HUANG, Xi WU, Zhen-Min HU, Wen-Ji LI, Yu DAI, Fu-Gen SUN. Lightweight 3D porous Al foams for the hosts of high-performance Li metal anodes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 291-299. doi: 10.11862/CJIC.2022.266 shu

Lightweight 3D porous Al foams for the hosts of high-performance Li metal anodes

  • Corresponding author: Fu-Gen SUN, sunfugen@ncu.edu.cn
  • Received Date: 27 July 2022
    Revised Date: 4 November 2022

Figures(6)

  • Lightweight, 3D porous, and lithiophilic Al foams has been used as the hosts for Li metal anodes, and compounded with metallic Li by a facile mechanical extrusion method to obtain the Al@Li composite anodes. The high lithiophilicity of Al foams could provide abundant and uniform active sites for Li nucleation, thus inducing the fast nucleation and uniform electro-deposition of Li metal into the Al foams. Moreover, the 3D porous structures of Al foams could accommodate the huge volume change of Li metal anodes during the charge/discharge process and reduce the local current density, thus effectively inhibiting the growth of Li dendrites. Therefore, compared with the bare Li metal anodes, the obtained Al@Li composite anodes exhibited higher cycling stability of Li plating/stripping with a lower overpotential of ca. 5 mV at 1 mA·cm-2 after 250 cycles in their symmetric cells. Furthermore, half-cell configurations with the Al@Li composite anodes and LiFePO4 cathodes also presented significantly enhanced cycling capacity and rate performance.
  • 加载中
    1. [1]

      Liu D H, Bai Z Y, Li M, Yu A P, Luo D, Liu W W, Yang L, Lu J, Amine K, Chen Z W. Developing high safety Li - metal anodes for future high - energy Li - metal batteries: Strategies and perspectives[J]. Chem. Soc. Rev., 2020,49(15):5407-5445. doi: 10.1039/C9CS00636B

    2. [2]

      Chu H, Noh H, Kim Y J, Yuk S, Lee J H, Lee J, Kwack H, Kim Y, Yang D K, Kim H T. Achieving three - dimensional lithium sulfide growth in lithium - sulfur batteries using high - donor - number anions[J]. Nat. Commun., 2019,10188. doi: 10.1038/s41467-018-07975-4

    3. [3]

      Huang L, Shen S H, Zhong Y, Zhang Y Q, Zhang L J, Wang X L, Xia X H, Tong X L, Zhou J C, Tu J P. Multifunctional hyphae carbon powering lithium-sulfur batteries[J]. Adv. Mater., 2022,34(6)2107415. doi: 10.1002/adma.202107415

    4. [4]

      Wang C H, Li Y H, Cao F, Zhang Y Q, Xia X H, Zhang L J. Employing Ni - embedded porous graphitic carbon fibers for high - efficiency lithium - sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2022,14(8):10457-10466. doi: 10.1021/acsami.1c24755

    5. [5]

      Pu K C, Zhang X, Qu X L, Hu J J, Li H W, Gao M X, Pan H G, Liu Y F. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries[J]. Rare Met., 2020,39:616-635. doi: 10.1007/s12598-020-01432-2

    6. [6]

      Liu H D, Yue X J, Xing X, Yan Q Z, Huang J, Petrova V, Zhou H, Liu P. A scalable 3D lithium metal anode[J]. Energy Storage Mater., 2019,16:505-511. doi: 10.1016/j.ensm.2018.09.021

    7. [7]

      Luo N, Ji G J, Wang H F, Li F, Liu Q C, Xu J J. Process for a free-standing and stable all - metal structure for symmetrical lithium-oxygen batteries[J]. ACS Nano, 2020,14:3281-3289. doi: 10.1021/acsnano.9b08844

    8. [8]

      Shan X Y, Zhong Y, Zhang L J, Zhang Y Q, Xia X H, Wang X L, Tu J P. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives[J]. J. Phys. Chem. C, 2021,125:19060-19080. doi: 10.1021/acs.jpcc.1c06277

    9. [9]

      Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S, Ku J H, Watanabe T, Park Y, Aihara Y, Im D, Han I T. High- energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nat. Energy, 2020,5:299-308. doi: 10.1038/s41560-020-0575-z

    10. [10]

      Guo Y P, Wang R Y, Cui C, Xiong R D, Wei Y Q, Zhai T Y, Li H Q. Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect[J]. Nano Lett., 2020,20:7680-7687. doi: 10.1021/acs.nanolett.0c03206

    11. [11]

      Xu N, Li L L, He Y, Tong Y, Lu Y Y. Understanding the molecular mechanism of lithium deposition for practical high - energy lithium-metal batteries[J]. J. Mater. Chem. A, 2020,8:6229-6237. doi: 10.1039/D0TA01044H

    12. [12]

      Ouyang Y, Guo Y P, Li D, Wei Y Q, Zhai T Y, Li H Q. Single additive with dual functional - ions for stabilizing lithium anodes[J]. ACS Appl. Mater. Interfaces, 2019,11:11360-11368. doi: 10.1021/acsami.8b21420

    13. [13]

      Zhuang H F, Zhao P, Xu Y. Superlithiophilic graphene-silver enabling ultra - stable hosts for lithium metal anodes[J]. Inorg. Chem. Front., 2020,7:897-904.

    14. [14]

      Hou Z, Yu Y K, Wang W H, Zhao X X, Di Q, Chen Q W, Chen W, Liu Y L, Quan Z W. Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode[J]. ACS Appl. Mater. Interfaces, 2019,11:8148-8154. doi: 10.1021/acsami.9b01521

    15. [15]

      Cui S Q, Zhai P B, Yang W W, Wei Y, Xiao J, Deng L B, Gong Y J. Large - scale modification of commercial copper foil with lithiophilic metal layer for Li metal battery[J]. Small, 2020,16(5)1905620. doi: 10.1002/smll.201905620

    16. [16]

      Wang X S, Pan Z H, Wu Y, Ding X Y, Hong X J, Xu G G, Liu M N, Zhang Y G, Li W S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite - free lithium metal anode[J]. Nano Res., 2019,12:525-529. doi: 10.1007/s12274-018-2245-z

    17. [17]

      Pei F, Fu A, Ye W B, Peng J, Fang X L, Wang M S, Zheng N F. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries[J]. ACS Nano, 2019,13:8337-8346. doi: 10.1021/acsnano.9b03784

    18. [18]

      Zhang H, Eshetu G G, Judez X, Li C, Rodrguez-Martnez L M, Armand M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progresses and perspectives[J]. Angew. Chem. Int. Ed., 2018,57(46):15002-15027. doi: 10.1002/anie.201712702

    19. [19]

      Ren X D, Zhang Y H, Engelhard M H, Li Q Y, Zhang J G, Xu W. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Lett., 2018,3:14-19. doi: 10.1021/acsenergylett.7b00982

    20. [20]

      Ma Y L, Zhou Z X, Li C J, Wang L, Cheng X Q, Zuo P J, Du C Y, Huo H, Gao Y Z, Yin G P. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive[J]. Energy Storage Mater., 2018,11:197-204. doi: 10.1016/j.ensm.2017.10.015

    21. [21]

      Xu K. Electrolytes and interphases in Li - ion batteries and beyond[J]. Chem. Rev., 2014,114(23):11503-11618. doi: 10.1021/cr500003w

    22. [22]

      Jiang G Y, Li K Y, Yu F, Li X L, Mao J Y, Jiang W W, Sun F G, Dai B, Li Y S. Robust artificial solid - electrolyte interfaces with biomimetic ionic channels for dendrite-free Li metal anodes[J]. Adv. Energy Mater., 2020,11(6)2003496.

    23. [23]

      Zuo Z F, Zhuang L B, Xu J Z, Shi Y M, Su C L, Lian P C, Tian B B. Lithiophilic silver coating on lithium metal surface for inhibiting lithium dendrites[J]. Front. Chem., 2020,8109. doi: 10.3389/fchem.2020.00109

    24. [24]

      Kim J Y, Liu G C, Tran M X, Ardhi R E A, Kim H, Lee J K. Synthesis and characterization of a hierarchically structured three-dimensional conducting scaffold for highly stable Li metal anodes[J]. J. Mater. Chem. A, 2019,7:12882-12892. doi: 10.1039/C9TA03062J

    25. [25]

      Yu J, Dang Y Y, Bai M H, Peng J X, Zheng D D, Zhao J K, Li L B, Fang Z. Graphene - modified 3D copper foam current collector for dendrite-free lithium deposition[J]. Front. Chem., 2019,7748. doi: 10.3389/fchem.2019.00748

    26. [26]

      Wu L L, Jiang W W, Zou H T, Ye C Z, Zhang J, Xu G J, Li X M, Yue Z H, Sun F G, Zhou L. Natural forest - inspired Ag lithiophilic porous arrays grown in Cu foam hosts with bi-continuous electronic/ionic pathways for highly stable Li metal anodes[J]. J. Mater. Chem. A, 2021,9:20748-20757. doi: 10.1039/D1TA04927E

    27. [27]

      Chi S S, Liu Y C, Song W L, Fan L Z, Zhang Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Adv. Funct. Mater., 2017,27(24)1700348. doi: 10.1002/adfm.201700348

    28. [28]

      Wang T S, Zhai P B, Legut D, Wang L, Liu X P, Li B X, Dong C X, Fan Y C, Gong Y J, Zhang Q F. S -doped graphene -regional nucleation mechanism for dendrite-free lithium metal anodes[J]. Adv. Energy Mater., 2019,9(24)1804000. doi: 10.1002/aenm.201804000

    29. [29]

      Wang Z Y, Lu Z X, Guo W, Luo Q, Yin Y H, Liu X B, Li Y S, Xia B Y, Wu Z P. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries[J]. Adv. Mater., 2021,33(4)2006702. doi: 10.1002/adma.202006702

    30. [30]

      Jiang G Y, Jiang N, Zheng N, Chen X, Mao J Y, Ding G Y, Li Y H, Sun F G, Li Y S. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes[J]. Energy Storage Mater., 2019,23:181-189. doi: 10.1016/j.ensm.2019.05.014

    31. [31]

      Lu R C, Zhang B B, Cheng Y L, Amin K, Yang C, Zhou Q Y, Mao L J, Wei Z X. Dual -regulation of ions/electrons in a 3D Cu-CuxO host to guide uniform lithium growth for high-performance lithium metal anodes[J]. J. Mater. Chem. A, 2021,9:10393-10403. doi: 10.1039/D1TA01150B

    32. [32]

      Jiang Y P, Wang B, Liu A M, Song R S, Bao C Y, Ning Y, Wang F, Ruan T T, Wang D L, Zhou Y. In situ growth of CuO submicro - sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries[J]. Electrochim. Acta, 2020,339135941. doi: 10.1016/j.electacta.2020.135941

    33. [33]

      Jiang H, Dong Q Y, Bai M H, Qin F R, Yi M Y, Lai J Q, Hong B, Lai Y Q. A 3D-mixed ion/electron conducting scaffold prepared by in situ conversion for long-life lithium metal anodes[J]. Nanoscale, 2021,13(5):3144-3152. doi: 10.1039/D0NR06539K

    34. [34]

      Cheng H, Gao C, Cai N, Wang M. Ag coated 3D-Cu foam as a lithiophilic current collector for enabling Li2S-based anode-free batteries[J]. Chem. Commun., 2021,57:3708-3711. doi: 10.1039/D1CC00006C

    35. [35]

      Hao C, Jin H, Liu H Y, Cai N, Gao C, Zhang P, Wang M. An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over - potential for dendrite - free lithium metal anodes[J]. J. Electroanal. Chem., 2020,878114569. doi: 10.1016/j.jelechem.2020.114569

    36. [36]

      Zhang H Y, Ju S L, Xia G L, Sun D L, Yu X B. Dendrite-free Li-metal anode enabled by dendritic structure[J]. Adv. Funct. Mater., 2021,31(16)2009712. doi: 10.1002/adfm.202009712

    37. [37]

      Zhong H, Wu Y X, Ding F, Sang L, Mai Y H. An artificial Li - Al interphase layer on Li-B alloy for stable lithium-metal anode[J]. Electrochim. Acta, 2019,304:255-262. doi: 10.1016/j.electacta.2019.03.009

    38. [38]

      Zhong H, Sang L, Ding F, Song J X, Mai Y H. Conformation of lithium - aluminium alloy interphase - layer on lithium metal anode used for solid state batteries[J]. Electrochim. Acta, 2018,277:268-275. doi: 10.1016/j.electacta.2018.04.191

    39. [39]

      Fan L, Li S Y, Liu L, Zhang W D, Gao L N, Fu Y, Chen F, Li J, Zhuang H L, Lu Y Y. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase[J]. Adv. Energy Mater., 2018,8(33)1802350. doi: 10.1002/aenm.201802350

    40. [40]

      Zhang R, Chen X, Shen X, Zhang X Q, Chen X R, Cheng X B, Yan C, Zhao C Z, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018,2(4):764-777. doi: 10.1016/j.joule.2018.02.001

    41. [41]

      WU L L, JIANG W W, DING G Y, LI Y H, ZHU Z, JING X G, YAN F Q, XU G J, YUE Z H, LI X M, SUN F G, ZHOU L. In -situ con-struction of Cu3P nanoflake array@Cu foam 3D frameworks for high performance Li - metal anodes[J]. Chinese J. Inorg. Chem., 2021,37(4):709-716.  

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    5. [5]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    6. [6]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    7. [7]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    8. [8]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    9. [9]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    10. [10]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    14. [14]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    15. [15]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(10)
  • Abstract views(716)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return